• Title/Summary/Keyword: 계층적 신경회로망

Search Result 25, Processing Time 0.019 seconds

Hierarchical Ann Classification Model Combined with the Adaptive Searching Strategy (적응적 탐색 전략을 갖춘 계층적 ART2 분류 모델)

  • 김도현;차의영
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.7_8
    • /
    • pp.649-658
    • /
    • 2003
  • We propose a hierarchical architecture of ART2 Network for performance improvement and fast pattern classification model using fitness selection. This hierarchical network creates coarse clusters as first ART2 network layer by unsupervised learning, then creates fine clusters of the each first layer as second network layer by supervised learning. First, it compares input pattern with each clusters of first layer and select candidate clusters by fitness measure. We design a optimized fitness function for pruning clusters by measuring relative distance ratio between a input pattern and clusters. This makes it possible to improve speed and accuracy. Next, it compares input pattern with each clusters connected with selected clusters and finds winner cluster. Finally it classifies the pattern by a label of the winner cluster. Results of our experiments show that the proposed method is more accurate and fast than other approaches.

Hierarchical Neural Network for Real-time Medicine-bottle Classification (실시간 약통 분류를 위한 계층적 신경회로망)

  • Kim, Jung-Joon;Kim, Tae-Hun;Ryu, Gang-Soo;Lee, Dae-Sik;Lee, Jong-Hak;Park, Kil-Houm
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.3
    • /
    • pp.226-231
    • /
    • 2013
  • In The matching algorithm for automatic packaging of drugs is essential to determine whether the canister can exactly refill the suitable medicine. In this paper, we propose a hierarchical neural network with the upper and lower layers which can perform real-time processing and classification of many types of medicine bottles to prevent accidental medicine disaster. A few number of low-dimensional feature vector are extracted from the label images presenting medicine-bottle information. By using the extracted feature vectors, the lower layer of MLP(Multi-layer Perceptron) neural networks is learned. Then, the output of the learned middle layer of the MLP is used as the input to the upper layer of the MLP learning. The proposed hierarchical neural network shows good classification performance and real- time operation in the test of up to 30 degrees rotated to the left and right images of 100 different medicine bottles.

Performance Evaluation and Implementation of Rank-Order Filter Using Neural Networks (신경회로망을 이용한 Rank-Order 필터의 구현과 성능 평가)

  • Yoon, Sook;Park, Dong-Sun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.6B
    • /
    • pp.794-801
    • /
    • 2001
  • 본 논문에서는 rank-order 필터의 구현을 위해 세 가지 신경회로망의 구조를 제시하고 분석하며 용도를 제안한다. 첫 번째 신경회로망을 이용하여 2-입력 정렬기를 제안하고 이를 이용하여 계층적인 N-입력 정렬기를 구성한다. 두 번째로 입력 신호간의 상대적인 크기 정보를 이용하여 학습 패턴을 구성한 후 역전파 학습 기법을 이용하여 구현되는 순방향 신경회로망을 이용한 rank-order 필터를 구현한다. 세 번째로 신경회로망의 구조의 출력층에 외부 입력으로 순위 정보를 가지도록 하는 rank-order 필터를 순방향 신경회로망을 이용하여 구현한다. 그리고 이러한 제안된 기술들에 대해 확장성, 구조의 복잡도와 시간 지연 등에서의 성능을 비교, 평가한다. 2-입력 정렬기를 이용하는 방식은 확장이 용이하고 비교적 구조가 간단하나 입력 신호들의 정렬을 위해 신경회로망은 순환하는 구조를 가지며 입력 신호의 수에 비례하는 반복 연산 후에 결과를 얻게 된다. 반면에, 순방향 신경회로망을 이용한 rank-order 필터의 구현 방식은 이러한 반복 연산으로 인한 시간 지연을 줄일 수 있으나 상대적으로 복잡한 구조를 가진다.

  • PDF

Karyotype Classification of The Chromosome Image using Hierarchical Neural Network (계층형 신경회로망을 이용한 염색체 영상의 핵형 분류)

  • 장용훈
    • Journal of the Korea Computer Industry Society
    • /
    • v.2 no.8
    • /
    • pp.1045-1054
    • /
    • 2001
  • To improve classification accuracy in this paper, we proposed an algorithm for the chromosome image reconstruction in the image preprocessing part and also proposed the pattern classification method using the hierarchical multilayer neural network(HMNN) to classify the chromosome karyotype. It reconstructed chromosome images for twenty normal human chromosome by the image reconstruction algorithm. The four morphological and ten density feature parameters were extracted from the 920 reconstructed chromosome images. The each combined feature parameters of ten human chromosome images were used to learn HMNN and the rest of them were used to classify the chromosome images. The experimental results in this paper were composed to optimized HMNN and also obtained about 98.26% to recognition ratio.

  • PDF

Implementation on the Classifier for Differential Diagnosis of Laryngeal Disease using Hierarchical Neural Network (계층적 신경회로망을 이용한 후두질환 감별 분류기)

  • 김경태;김길중;전계록
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.1
    • /
    • pp.76-82
    • /
    • 2002
  • In this paper, we implemented on the classifier for differential diagnosis of laryngeals disease which is normal, polyp, nodule, palsy, and each step of glottic cancer using hierarchical neural network. We conducted on classifier of various vowels as /a/, /e/, /i/, /o/, /u/ from normal group, laryngeal disease group, each step of cancer group. The experimental result on classification of each vowels as follows. A /a/ vowel shows excellent classification result to the other vowels in regard to each Input parameters. Thus we implemented the hierarchical neural network for differential diagnosis of laryngeals disease using only /a/ vowel. A implemented hierarchical neural network is composed of each other laryngeals disease apply to each other parameter in each hierarchical layer. We take the voice signals from patient who get the laryngeal disease and glottic cancer, and then use the APQ, PPQ, vAm, Jitter, Shimmer, RAP as input parameter of neural networks.

A Basic Study on the Differential Diagnostic System of Laryngeal Diseases using Hierarchical Neural Networks (다단계 신경회로망을 이용한 후두질환 감별진단 시스템의 개발)

  • 전계록;김기련;권순복;예수영;이승진;왕수건
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.3
    • /
    • pp.197-205
    • /
    • 2002
  • The objectives of this Paper is to implement a diagnostic classifier of differential laryngeal diseases from acoustic signals acquired in a noisy room. For this Purpose, the voice signals of the vowel /a/ were collected from Patients in a soundproof chamber and got mixed with noise. Then, the acoustic Parameters were analyzed, and hierarchical neural networks were applied to the data classification. The classifier had a structure of five-step hierarchical neural networks. The first neural network classified the group into normal and benign or malign laryngeal disease cases. The second network classified the group into normal or benign laryngeal disease cases The following network distinguished polyp. nodule. Palsy from the benign laryngeal cases. Glottic cancer cases were discriminated into T1, T2. T3, T4 by the fourth and fifth networks All the neural networks were based on multilayer perceptron model which classified non-linear Patterns effectively and learned by an error back-propagation algorithm. We chose some acoustic Parameters for classification by investigating the distribution of laryngeal diseases and Pilot classification results of those Parameters derived from MDVP. The classifier was tested by using the chosen parameters to find the optimum ones. Then the networks were improved by including such Pre-Processing steps as linear and z-score transformation. Results showed that 90% of T1, 100% of T2-4 were correctly distinguished. On the other hand. 88.23% of vocal Polyps, 100% of normal cases. vocal nodules. and vocal cord Paralysis were classified from the data collected in a noisy room.

Classification of Fall in Sick Times of Liver Cirrhosis using Magnetic Resonance Image (자기공명영상을 이용한 간경변 단계별 분류에 관한 연구)

  • Park, Byung-Rae;Jeon, Gye-Rok
    • Journal of radiological science and technology
    • /
    • v.26 no.1
    • /
    • pp.71-82
    • /
    • 2003
  • In this paper, I proposed a classifier of liver cirrhotic step using T1-weighted MRI(magnetic resonance imaging) and hierarchical neural network. The data sets for classification of each stage, which were normal, 1type, 2type and 3type, were obtained in Pusan National University Hospital from June 2001 to december 2001. And the number of data was 46. We extracted liver region and nodule region from T1-weighted MR liver image. Then objective interpretation classifier of liver cirrhotic steps in T1-weighted MR liver images. Liver cirrhosis classifier implemented using hierarchical neural network which gray-level analysis and texture feature descriptors to distinguish normal liver and 3 types of liver cirrhosis. Then proposed Neural network classifier teamed through error back-propagation algorithm. A classifying result shows that recognition rate of normal is 100%, 1type is 82.3%, 2type is 86.7%, 3type is 83.7%. The recognition ratio very high, when compared between the result of obtained quantified data to that of doctors decision data and neural network classifier value. If enough data is offered and other parameter is considered, this paper according to we expected that neural network as well as human experts and could be useful as clinical decision support tool for liver cirrhosis patients.

  • PDF

Design of a Spatial Filtering Neural Network for Extracting Map Symbols (공간필터를 이용한 지도기소 추출 신경회로망의 구성)

  • Gang, Ik-Tae;Kim, Uk-Hyeon;Kim, Gyeong-Ha;Kim, Yeong-Il;Lee, Geon-Gi
    • The Transactions of the Korea Information Processing Society
    • /
    • v.2 no.2
    • /
    • pp.199-208
    • /
    • 1995
  • In this paper, a neural network architecture which can extract map symbols by being based on the results of physiological and neuropsychological studies on pattern recognition is proposed. This network is composed of multi-layers and synaptic activities of combining layers are implemented by spatial filters which approximate receptive fields of optic nerve cells. In pattern recognition which is followed by color classification for extracting of map symbols from input image, this network is searching for candidatepoints in lower layers (layer 2, 3) by using local features such as lines and end-points and then processing symbols recognition on those points in upper layer(layer 4) by using global features.

  • PDF

A Study on the Classification of Hangeul Patterns Using Hierarchical Neural Network (계층적 신경회로망을 이용한 한글 패턴 분류에 관한 연구)

  • Kim, Do-Hyeon;Lee, Byeong-Mo;Cha, Eui-Young
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2002.04a
    • /
    • pp.569-572
    • /
    • 2002
  • 한글을 인식하기 위한 전처리 방법으로 흔히 모음의 종류 및 자음과의 결합 정도에 따라 6가지 유형으로 분류하는 방법을 많이 사용하고 있다. 간 논문에서는 이러한 한글 문자를 인식하기 위한 전처리 과정으로써 한글의 유형을 분류하는 방법에 대한 연구로 계층적인 신경회로망을 도입하여 빠르고 신뢰성 있는 분류 방법을 제안한다. 실험에 사용된 글자는 KS X 1001(KS C 5601) 완성형 글자 2,350개에 대한 굴림, 바탕, 돋움, 궁서 글꼴로 총 9400개의 이미지 파일을 사용하였으며. 이 중 일부는 훈련에 사용하고 나머지는 분류를 위한 테스트 데이터로 사용한 결과 약 94%의 유형 분류율과 개별 패턴을 5.67ms에 분류하는 빠른 분류 속도를 나타내었다.

  • PDF

Disease Region Pattern Recognition Algorithm of Gastrointestinal Image using Wavelet Transform and Neural Network (Wavelet변환과 신경회로망에 의한 위장 영상의 질환 부위 패턴 인식 알고리즘)

  • 이상복;이주신
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.5
    • /
    • pp.70-77
    • /
    • 1999
  • 본 논문에서는 Wavelet을 이용한 위장 영상의 질환 부위 특징을 추출하여 질환 부위 패턴을 인식할 수 있는 알고리즘을 제안하였다. 전처리 과정으로서 위장 영상이 형태정보는 입력 영상을 DWT(Discrete wavelet transform)에 의해 4레벨 DWT 계수 행렬을 구하고 계수 행렬의 특징에 따라 저주파 계수 행렬로부터 저주파 특징 파라미터 32개, 수평 고주파 계수 행렬로부터 수평 고주파 특징 파라미터 16개, 수직 고주파 계수 행렬로부터 수직 고주파 특징 파라미터 16개, 그리고, 대각 고주파 계수 행렬로부터 대각 고주파 특징 파라미터 32개 등 모두 96개의 특징 파라미터를 추출한 후 각각의 특징 파라미터를 최대 값+0.5로 최소 값을 -0.5로 정규화 하여 신경회로망의 입력 벡터로 사용하였다. 위장 영상 패턴 인식을 위한 신경회로망은 교사 학습을 요구하는 다층 구조의 오차 역전파(Error back propagation)알고리즘으로 하였고 구조적 특성을 이용하여 입력층, 중간층, 출력층의 계층 구조로 설계하였다. 설계된 신경회로망의 학습은 학습계수를 0.2로 모우멘텀을 0.6으로 설정하여 출력층 최대오차가 0.01보다 작을 때까지 수행하였으며 약 8000회 정도 학습한 결과 설정값 보다 작은 결과를 얻었고 질환의 종류나 위치, 크기에 관계없이 100%의 인식률을 얻었다.

  • PDF