복잡한 시맨틱을 포함한 웹 문서를 정확히 범주화하고 이 과정을 자동화하기 위해서는 인간의 지식체계를 수용할 수 있는 표준화, 지능화, 자동화된 문서표현 및 분류기술이 필요하다. 이를 위해 키워드 빈도수, 문서내 키워드들의 관련성, 시소러스의 활용, 확률기법 적용 등에 사용자의도(intention) 정보를 활용한 범주화와 조정 프로세스를 도입하였다. 웹 문서 분류과정에서 시소러스 등을 사용하는 지식베이스 문서분류와 비 감독 학습을 하는 사전 지식체계(a priori)가 없는 유사성 문서분류 방법에 의도정보를 사용할 수 있도록 기반체계를 설계하였고 다시 이 두 방법의 차이는 Hybrid조정프로세스에서 조정하였다. 본 연구에서 설계된 HDCI(Hybrid Document Classification with Intention) 모델은 위의 웹 문서 분류과정과 이를 제어 및 보조하는 사용자 의도 분석과정으로 구성되어 있다. 의도분석과정에 키워드와 함께 제공된 사용자 의도는 도메인 지식(domain Knowledge)을 이용하여 의도간 계층트리(intention hierarchy tree)를 구성하고 이는 문서 분류시 제약(constraint) 또는 가이드의 역할로 사용자 의도 프로파일(profile) 또는 문서 특성 대표 키워드를 추출하게 된다. HDCI는 문서간 유사성에 근거한 상향식(bottom-up)의 확률적인 접근에서 통제 및 안내의 역할을 수행하고 지식베이스(시소러스) 접근 방식에서 다양성에 한계가 있는 키워들 간 관계설정의 정확도를 높인다.
최근 한정된 자원으로 인한 에너지 수요가 증가하면서 에너지 절약 문제가 중요한 과제로 대두되었다. 본 논문에서는 효율적인 에너지 절약 문제를 해결하기 위한 방법으로 열 영상과 퍼지 제어 기법을 적용하여 실내 냉방 장치의 풍향과 풍속을 제어하는 방법을 제시한다. 본 논문에서는 실내 냉방 장치의 풍향과 풍속을 제어하기 위해 획득한 초기 열 영상을 색상 분포 영상으로 변환한다. 색상 분포 영상은 Red, Magenta, Yellow, Green, Sky, Blue의 온도 값을 가지는 RGB 값이며 각 색상은 $24.0^{\circ}C$에서 $27.0^{\circ}C$의 분포의 온도 값을 가진다. 본 논문에서는 색상 분포 영상을 좌에서 우로 5개의 계층 구간으로 분류하여 온도를 분석한다. 실내 공간의 색상 분포 영상을 분석하여 얻어진 각 계층 구간의 온도와 대기 중의 습도를 퍼지 소속 함수에 적용하여 구해진 결과 값을 비퍼지화 하고 최종적으로 풍향의 세기를 제어한다. 그리고 열 영상을 분석하여 풍향의 우선순위, 풍향의 지속시간을 결정한다. 제안된 방법을 $300{\times}400$ 크기의 열 영상을 대상으로 기존의 시스템과의 전력량 차이를 시뮬레이션 한 결과, 제안된 방법이 효과적인 것을 확인할 수 있었다.
시간에 중속적인 문서집합에서 사람이 만든 요약문은 시간에 따른 중요 내용의 분포를 보여준다. 본 논문은 다중 문서에 시간 자질을 이용한 문서의 분류와 시간별 문서집합에서 핵심문장과 부가문장을 선별하고, 문장간의 계층적인 클러스터링을 통해서 중요 문장을 선별하는 방법을 제안한다. 동일한 주제를 갖는 문서집합에서 사랑이 선택한 중요 문장에 대해서 제안한 방법은 50% 정확률을 나타냈다.
웹 3.0으로 진화중인 웹 환경 하에서 블로그는 사용자 주도적인 웹의 특성을 가장 잘 표현하는 집합체 중 하나로, 기존의 웹 정보자원과 구분되는 새로운 형태의 지식베이스로써의 역할을 담당하고 있다. 기존의 웹 정보자원들이 사이트 단위로 광범위한 주제를 다루었던 것에 반해, 블로그의 정보자원은 사용자의 관심사에 따라 특정 정보들이 블로그 단위로 밀집되어 있으며 또한 사용자 태깅에 의해 게시된 정보자원에 대한 분류기준을 가지고 있다. 본 연구에서는 이러한 블로그의 특징들을 이용하여 보다 좀 더 효과적인 정보검색에 활용하기 위하여 블로그의 제목 키워드나 태그를 활용하여 태그 계층구조를 만들고 그 계층구조를 적용한 포스트군집화 방법론을 개발하여 기존의 블로그 검색과는 다른 특성을 가진 검색결과를 제시하였다. 이를 위하여 블로그 태그간의 관계성이 반영된 태그 계층구조를 생성하고 태그 유사도에 따른 태그군집화 방법을 개발하였다. 본 논문은 제안된 방법론을 구현한 프로토타입 시스템을 통해 실제사례에서의 연구의 적용 가능성을 판단하였으며, 군집 유사도 평가기준인 CSIM(Cluster SIMilarity)을 사용하여 골든 스탠다드의 유사도 비교를 통해 개발된 방법론과 시스템의 성과를 평가하였다.
본 논문은 계층적 디리슐레 과정(HDP)과 은닉 마르코프 모형(HMM)이 결합된 베이스 통계학적 방법과 HMM의 상태 지속 정보를 이용한 건강 상태 예측 방법을 제안한다. HDP-HMM은 베이스 방법의 HMM 확장 모형으로서 건강의 동적 특성을 고려하여 불확실하고 가늠하기조차도 어려운 건강 상태의 수를 추정할 수 있게 해준다. 모의 데이터와 실제 건건 검진 데이터를 이용한 시험을 통하여 흥미 있는 행동 특성을 볼 수 있었으며 최대 5년까지로 제한한 미래 예측도 충분한 가능함을 확인하였다. 미래는 불확실하며 예측 문제는 본질적으로 어렵다. 그러나 본 연구의 실험 결과로 동적인 문맥 하에서 다중 후보 가설을 제시함으로서 실용 가능한 건강상태의 장기 예측이 가능하다는 것을 읽을 수 있었다.
본 연구에서는 염색체의 영상패턴을 인식하고 분류하는 방법을 개선하기 위해 패턴인식의 특징정보로 사용되는 비선형적인 염색체 영상을 선형적으로 재구성하는 영상 재구성 알고리즘을 사용하여 선형화된 특징정보를 추출하여 패턴분류기인 신경회로망의 입력정보로 사용한다. 중앙축 변환방법과, 영상 재구성방법을 사용하여 임상적으로 정상인으로 판명된 20명의 염색체 영상의 특징정보를 추출하였다. 중앙축 변환방법에 의하여 추출된 특징정보의 패턴조합과 영상 재구성방법에 의하여 추출된 특징정보의 패턴조합을 구성하였으며, 10명에 대하여 추출한 특징정보를 계층적인 신경회로망(Hierarchical Multilayer Neural Network : HMNN)의 학습입력으로 사용하여 염색체를 분류하기 위한 패턴인식기를 구현하였다. 그리고 나머지 10명에 대하여 학습입력과 동일하게 조합된 패턴조합을 HMNN의 분류입력으로 사용하여 수행한 결과 약 98.26%의 우수한 인식률을 나타내는 최적화된 패턴인식기를 구현할 수 있었다.
기존 물관련 시스템들은 독자적인 DB 구조를 가지고 있고 검색 서비스는 자체 시스템의 DB를 직접 접근하여 사용자에게 결과를 제시하는 형식이다. 이러한 서비스의 단점은 사용자가 개별 시스템의 서비스에 대한 지식이 없으면 접근하기 어렵다는 점이다. 개별 시스템의 개별 서비스의 개념을 벗어나기 위하여 물관련 시스템에 있는 하천공간자료 검색 정보를 카탈로그 서버에 등록하고, 카탈로그 서버에 등록된 검색정보를 사용자가 검색하는 방식을 적용하고자 한다. 카탈로그 서버에 자료에 대한 정보를 등록할 때 자료의 정보를 어떻게 기술할 것인가의 문제가 발생한다. 개별 서버마다 등록하게 된다면 용어 및 문화에 의한 차이로 같은 개념을 다른 용어로 등록하게 되는 혼란이 발생할 소지가 있다. 예를 들어 강우자료에 대하여 "강우", "Precipitation", "Railfall", "비" 등으로 등록할 소지가 있다. 이러면 실제 자료가 존재하는 데도 등록 방법에 따라 자료의 검색이 어려워진다. 이러한 상황을 제어하기 위하여 검사어휘(Controlled Vocabulary)를 도입한다. 이는 포털의 운영자가 미리 용어의 개념과 용어의 분류체계를 설정하고 등록 자료의 검색어를 미리 설정하여 자료의 원천 소유자가 자료를 등록 시 검사어휘를 참고하여 등록하거나 또는 등록되지 않는 용어의 자료인 경우 이 용어를 포탈에 신규로 등록한다. 검색용어의 난립을 피하기 위하여 사용자의 신규등록은 포탈의 운영자가 어느 정도 제어할 필요가 있다. 검사어휘의 정립과 하천 관련된 분류체계는 하천공간정보 검색의 포탈을 위한 필수사항이다. 검사어휘의 정립의 주된 목적은 이질성의 극복이다. 이질성의 종류는 문법적 이질성, 데이터 형식과 구조 및 문맥적 이질성이 있다. 이 중에서 문맥적 이질성이 가장 넓고 어려운 문제이다. 단위는 분야마다 호칭이 다르고 채택하는 기준마다 다르다. 유사어는 전문용어라도 분야마다 다르다. 우리나라에서 서비스 인코딩시 국어와 영어를 어떻게 처리할 지에 대한 대책도 필요하다. 수문학의 시계열 자료를 다루는 CUAHSI/HIS의 온톨로지는 대 개념으로 물리학적, 화학적 및 생물학적인 분야로 분류하고 있다. 하천공간정보의 온톨로지 구축을 위해 데이터 분석 및 분류, 온톨로지 요소 설정, 온톨로지 데이터 테이블 작성, 클래스 생성 및 계층화, 클래스 계층화에 따른 속성 설정, 클래스에 적합한 개체 삽입, 논리 관계 확인 및 수정과 같은 과정으로 온톨로지 개발을 진행하고자 한다.
본 논문에서는 영상에 포함된 중심 객체를 추출하는 방법에 대해 제시한다. 중심 객체는 촬영의 중심이 되어 영상의 중앙 부분에 비교적 큰 면적을 차지하는 객체로 정의하는데 영상 내용에 대한 중요한 정보를 제공한다. 중심 객체 추출을 위해 우선 입력 영상에 대해 해상도를 줄여가며 영상 분할하고 분할된 결과에 대해 계층적 영역 병합을 수행함으로써 객체가 많은 수의 영역으로 세분화되어 영상 분할되는 것을 방지할 수 있도록 하였다. 분할된 각 영역은 영상의 경계와 접하는 경계 영역과 그 외의 비경계 영역으로 분류하였다. 비경계 영역은 중심 객체에 해당될 가능성이 있는 영역으로써, 이들 중에서 영상 중심 부근에서 가장 큰 크기를 차지하는 영역이 핵심객체영역으로 선택된다. 또한 경계 영역 중에서 영상의 네 모서리에 인접하는 영역은 핵심배경영역으로 선택되어 핵심객체영역과 함께 중심 객체 추출에 이용된다. 각 비경계 영역은 핵심 배경영역및 핵심객체영역과 칼라 분포 유사도출 비교하여 배경영역과 전경영역으로 분류된다. 핵심객체영역 및 핵심객체영역과 연결성을 가지는 전경영역이 최종 중심 객체로 선택된다. 본 논문에서 제안된 방법은 비교적 복잡한 배경을 갖는 영상에 대해서도 어느 정도 만족할 만한 결과를 얻을 수 있었다.
현재 인터넷을 통해 수집되는 빅 데이터는 데이터의 종류와 크기에 따라 데이터가 수집되는 시간보다 데이터가 증가하는 속도가 높아 사용자가 원하는 데이터를 원활하게 수집하는 것이 어려운 상황이다. 특히, 데이터의 사용 목적 및 종류에 따라 다르게 처리되기 때문에 데이터의 정확성과 계산비용이 빅 데이터 관리에 중요한 항목 중 하나이다. 본 논문에서는 인터넷에 존재하는 수많은 서로 다른 종류의 데이터를 사용자가 원할 때, 데이터를 정확하게 추출하는 동시에 데이터의 계산비용을 최소화하기 위해서 이중 해쉬체인을 이용한 계층적 다중처리 기반의 데이터 처리기법을 제안한다. 제안 기법은 다양한 종류의 데이터를 추출하기 위해서 데이터를 사용 목적 및 방법에 따라 계층적으로 분류한다. 이때, 데이터의 정확도를 높이기 위해서 데이터를 이중 해쉬체인으로 묶어 다중 처리한다. 또한, 제안 기법은 계층적으로 분류된 데이터를 손쉽게 접근하기 위해서 해쉬체인으로 데이터를 구성하여 데이터의 처리 비용을 줄였다. 실험결과, 제안 기법은 기존 기법보다 데이터의 정확도는 평균 7.8% 높았고, 데이터의 처리 비용은 4.9% 단축시켰다.
본 연구의 목적은 청소년의 초기 단계에 해당하는 초등학교 고학년 학생들의 공격성 변화에 따라 구분되는 집단(잠재계층)의 수와 그 형태를 알아보고, 각 잠재계층과 성별, 자기통제력, 부모애착, 교사애착, 비행친구 수와의 관련성을 밝히는 것이다. 이를 위하여 한국청소년패널조사의 초등학교 4학년 패널 1, 2, 3차 년도 종단자료에 Nagin(1999)의 준모수적 집단 중심 방법(semi-parametric group-based approach)을 적용하였다. 분석 결과 변화형태에 따라 4개의 잠재계층이 도출되었고, 그 형태에 따라 저수준 집단, 증가 집단, 중간수준 집단, 고수준 집단으로 명명하였다. 다항 로짓분석을 통해 영향요인을 검증한 결과 성별, 자기통제력, 교사애착, 비행친구 수가 잠재계층을 결정하는 데 유의미한 변수로 나타났다. 본 연구는 공격성의 변화에 영향을 줄 수 있는 생태학적 변수들을 바탕으로 잠재계층을 예측하여 공격성으로 인해 범죄를 저지를 가능성이 있는 청소년들을 위한 적절한 대비책을 찾는 데 도움을 줄 것이다. 또한 변화의 형태에 따라 잠재계층을 도출하고 그 잠재계층을 결정짓는 데 미치는 독립변수의 효과들을 검증하는 종단연구 방법은 아직 널리 이용되고 있지 않다는 점에서 연구 방법론적 측면에서도 의의가 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.