• Title/Summary/Keyword: 계수효율

Search Result 2,510, Processing Time 0.032 seconds

The Prediction of Ship's Powering Performance Using Statistical Analysis and Theoretical Formulation (통계해석과 이론식을 이용한 저항추진성능 추정)

  • Eun-Chan,Kim;Sung-Wan,Hong;Seung-Il,Yang
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.26 no.4
    • /
    • pp.14-26
    • /
    • 1989
  • This paper describes the method of statistical analysis and its programs for predicting the ship's powering performance. The equation for the wavemaking resistance coefficient is derived as the sectional area coefficients by using the wavemaking resistance theory and its regression coefficients are determined from the regression analysis of the model test results. The equations for the form factor, wake franction and thrust deduction fraction are derived by purely regression analysis of the principal dimensions, sectional area coefficients and model test results. The statistical analyses are performed using the various descriptive statistic and stepwise regression analysis techniques. The powering performance prognosis program is developed to cover the prediction of resistance coefficients, propulsive coefficients, propeller open-water efficiency and various scale effect corrections.

  • PDF

Measurement and Analysis of Diffusivity for SBS/cyclic Solvent Systems Using CCIGC Technique (CCIGC 기법을 사용한 SBS/cyclic solvent 시스템에서의 확산계수 측정 및 해석)

  • Kim, Jiui;Hong, Seong Uk
    • Applied Chemistry for Engineering
    • /
    • v.25 no.2
    • /
    • pp.147-151
    • /
    • 2014
  • In many polymer processing operations, the diffusion of small molecules in polymeric materials plays an important role. The fundamental physical property required to design and optimize processing operations is the mutual diffusion coefficient. To investigate the transport properties of polymer/solvent systems at infinite dilution, capillary column inverse gas chromatography (CCIGC) is often employed. In this study, diffusion and partition coefficients of cyclic solvents in styrene/butadiene/styrene (SBS) block copolymer were measured over a wide temperature range using the CCIGC technique.

Rank Correlation Coefficient of Energy Data for Identification of Abnormal Sensors in Buildings (에너지 데이터의 순위상관계수 기반 건물 내 오작동 기기 탐지)

  • Kim, Naeon;Jeong, Sihyun;Jang, Boyeon;Kim, Chong-Kwon
    • Journal of KIISE
    • /
    • v.44 no.4
    • /
    • pp.417-422
    • /
    • 2017
  • Anomaly detection is the identification of data that do not conform to a normal pattern or behavior model in a dataset. It can be utilized for detecting errors among data generated by devices or user behavior change in a social network data set. In this study, we proposed a new approach using rank correlation coefficient to efficiently detect abnormal data in devices of a building. With the increased push for energy conservation, many energy efficiency solutions have been proposed over the years. HVAC (Heating, Ventilating and Air Conditioning) system monitors and manages thousands of sensors such as thermostats, air conditioners, and lighting in large buildings. Currently, operators use the building's HVAC system for controlling efficient energy consumption. By using the proposed approach, it is possible to observe changes of ranking relationship between the devices in HVAC system and identify abnormal behavior in social network.

Preliminary design and performance analysis of a radial inflow turbine (유기랭킨사이클용 반경류터빈의 예비설계 및 성능분석)

  • Kim, Do-Yeop;Kang, Ho-Keun;Kim, You-Taek
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.7
    • /
    • pp.735-743
    • /
    • 2015
  • The major component with a significant impact on the thermodynamic efficiency of the organic Rankine cycle is the turbine. Many difficulties occur in the turbine design of an organic Rankine cycle because the expansion process in an organic Rankine cycle is generally accompanied by a dramatic change in the working fluid properties. A precise preliminary design for a radial inflow turbine is hard to obtain using the classic method for selecting the loading and flow coefficients from the existing performance chart. Therefore, this study proposed a method to calculate the loading and flow coefficient based on the number of rotor vanes and thermodynamic design requirements. Preliminary design results using the proposed models were in fairly good agreement with the credible results using the commercial preliminary design software. Furthermore, a numerical analysis of the preliminary design results was carried out to verify the accuracy of the proposed preliminary design models, and most of the dependent variables, with the exception of the efficiency, were analyzed to meet the preliminary design conditions.

Effect of Orifice Nozzle Design and Input Power on Two-Phase Flow and Mass Transfer Characteristics (2 상 유동 및 물질전달 특성에 미치는 오리피스 노즐형상과 소요동력의 영향)

  • Yang, Hei Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.4
    • /
    • pp.237-243
    • /
    • 2016
  • It is necessary to investigate the input power as well as the mass transfer characteristics of the aeration process in order to improve the energy efficiency of an aerobic water treatment. The objective of this study is to experimentally investigate the effect of orifice nozzle design and input power on the flow and mass transfer characteristics of a vertical two-phase flow. The mass ratio, input power, volumetric mass transfer coefficient, and mass transfer efficiency were calculated using the measured data. It was found that as the input power increases the volumetric mass transfer coefficient increases, while the mass ratio and mass transfer efficiency decrease. The mass ratio, volumetric mass transfer coefficient, and mass transfer efficiency were higher for the orifice configuration with a smaller orifice nozzle area ratio. An empirical correlation was proposed to estimate the effect of mass ratio, input power, and Froude number on the volumetric mass transfer coefficient.

Design and Performance Analysis of Steam Turbine for Variations of Degree of Reaction (반동도에 따른 증기터빈의 설계 및 성능해석)

  • Shin, Jung-Ha;Lee, Geun-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.12
    • /
    • pp.1391-1398
    • /
    • 2011
  • Design and performance analysis of a steam turbine for variations of degree of reaction were performed by computer simulation. Design parameters such as blade angles, exit areas, and heights of the nozzle and moving blade were represented as functions of the degree of reaction. The main performance factors such as turbine power, diagram efficiency, and axial thrust were also expressed in terms of the degree of reaction. For further information about the design and performance, the blade angles and main performance factors were investigated as functions of the flow coefficient. The turbine power and diagram efficiency reached a maximum value for a given degree of reaction and flow coefficient, and the symmetric shape of the moving blade showed distortion as the degree of reaction was increased.

Study on the Evaluation Method for EEDI of the Small Vessel using CFD (CFD 기반 소형 선박의 EEDI 평가 방법에 관한 연구)

  • Park, Dong-Woo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.5
    • /
    • pp.627-633
    • /
    • 2019
  • This study aimed to predict the resistance and propulsion performance of a ship using computational fluid dynamics (CFD) and a database as well as establish an assessment method for the energy efficiency design index (EEDI) using the results. First, the total resistance of the studied ship is obtained using CFD. A flow analysis is conducted with the free surface and trim and sinkage using a commercial CFD code (STAR-CCM+). The effective power of the ship is assessed based on the CFD results. The quasi-propulsive efficiency is calculated from an empirical prediction equation using experimental data and similar material. Finally, a general calculation program for the EEDI is established based on the hydrodynamic results, ship information for principal particulars, conversion factor of $CO_2$ for fuels, and fuel consumption.

A Study on the Applicability of Numerical Analysis for the SASW Method (SASW 기법에 대한 수치해석 적용성 연구)

  • 김동수;윤종구;이병식;박형춘
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.1
    • /
    • pp.67-76
    • /
    • 2001
  • 현장지반의 최대전단탄성계수를 신속하고 합리적으로 구할 수 있는 표면파기법에 대해 유한요소법을 이용하여 시뮬레이션 할 경우 적용할 수 있는 효율적인 해석조건에 대한 연구를 수행하였다. 본 연구결과 파의 전파형상을 효율적으로 묘사하기 위하여는 관심 있는 최소 파장에 대한 유한요소 크기의 비가 매우 중요한 요소임을 확인하였고, 데이터의 측정시간간격도 중요한 요소임을 확인하였다. 또한, 유한요소해석을 이용하여 얻은 반무한체 시스템과 2층 시스템의 분산곡선과 이론적 분산곡선이 비교적 잘 일치함을 볼 수 있었다. 따라서, 유한요소해석을 적절히 적용하는 경우에 표면파기법을 효과적으로 시뮬레이션 할 수 없음을 확인하였다. 현장지반의 최대전단탄성계수를 신속하고 합리적으로 구할 수 있는 표면파기법에 대해 유한요소법을 이용하여 시뮬레이션 할 경우 적용할 수 있는 효율적인 해석조건에 대한 연구를 수행하였다. 본 연구결과 파의 전파형상을 효율적으로 묘사하기 위하여는 관심 있는 최소 파장에 대한 유한요소 크기의 비가 매우 중요한 요소임을 확인하였고, 데이터의 측정시간간격도 중요한 요소임을 확인하였다. 또한, 유한요소해석을 이용하여 얻은 반무한체 시스템과 2층 시스템의 분산곡선과 이론적 분산곡선이 비교적 잘 일치함을 볼 수 있었다. 따라서, 유한요소해석을 적절히 적용하는 경우에 표면파기법을 효과적으로 시뮬레이션 할 수 없음을 확인하였다.

  • PDF