• Title/Summary/Keyword: 계속자료

Search Result 1,075, Processing Time 0.029 seconds

Occurrence and Chemical Composition of Ti-bearing Minerals from Samgwang Au-ag Deposit, Republic of Korea (삼광 금-은 광상에서 산출되는 함 티타늄 광물들의 산상 및 화학조성)

  • Yoo, Bong Chul
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.3
    • /
    • pp.195-214
    • /
    • 2020
  • The Samgwang Au-Ag deposit has been one of the largest deposits in Korea. The deposit consists of eight lens-shaped quartz veins which filled fractures along fault zones in Precambrian metasedimentary rock, which feature suggest that it is an orogenic-type deposit. The Ti-bearing minerals occur in wallrock (titanite, ilmenite and rutile) and laminated quartz vein (rutile). They occur minerals including biotite, muscovite, chlorite, white mica, monazite, zircon, apatite in wallrock and white mica, chlorite, arsenopyrite in laminated quartz vein. Chemical composition of titanite has maximum vaules of 3.94 wt.% (Al2O3), 0.49 wt.% (FeO), 0.52 wt.% (Nb2O5), 0.46 wt.% (Y2O3) and 0.43 wt.% (V2O5). Titanite with 0.06~0.14 (Fe/Al ratio) and 0.06~0.15 (XAl (=Al/Al+Fe3++Ti)) corresponds with metamorphic origin and low-Al variety. Chemical composition of ilmenite has maximum values of 0.07 wt.% (ZrO2), 0.12 wt.% (HfO2), 0.26 wt.% (Nb2O5), 0.04 wt.% (Sb2O5), 0.13 wt.% (Ta2O5), 2.62 wt.% (As2O5), 0.29 wt.% (V2O5), 0.12 wt.% (Al2O3) and 1.59 wt.% (ZnO). Chemical composition of rutile in wallrock and laminated quartz vein has maximum values of 0.35 wt.%, 0.65 wt.% (HfO2), 2.52 wt.%, 0.19 wt.% (WO3), 1.28 wt.%, 1.71 wt.% (Nb2O3), 0.03 wt.%, 0.07 wt.% (Sb2O3), 0.28 wt.%, 0.21 wt.% (As2O5), 0.68 wt.%, 0.70 wt.% (V2O3), 0.48 wt.%, 0.59 wt.% (Cr2O3), 0.70 wt.%, 1.90 wt.% (Al2O3) and 4.76 wt.%, 3.17 wt.% (FeO), respectively. Rutile in laminated quartz vein is higher contents (HfO2, Nb2O3, As2O5, Cr2O3, Al2O3 and FeO) and lower content (WO3) than rutile in wallrock. The substitutions of rutile in wallrock and laminated quatz vein are as followed : rutile in wallrock [(Fe3+, Al3+, Cr3+) + Hf4+ + (W5+, As5+, Nb5+) ⟵⟶ 2Ti4+ + V4+, 2Fe2+ + (Al3+, Cr3+) + Hf4+ + (W5+, As5+, Nb5+) ⟵⟶ 2Ti4+ + 2V4+], rutile in laminated quartz vein [(Fe3+, Al3+) + As5+ ⟵⟶ Ti4+ + V4+, (Fe3+, Al3+) + As5+ ⟵⟶ Ti4+ + Hf4+, 4(Fe3+, Al3+) ⟵⟶ Ti4+ + (W5+, Nb5+) + Cr3+], respectively. Based on these data, titanite, ilmenite and rutile in wallrock were formed by resolution and reconcentration of cations (W5+, Nb5+, As5+, Hf4+, V4+, Cr3+, Al3+, Fe3+, Fe2+) in minerals of wallrock during regional metamorphism. And then rutile in laminated quartz vein was formed by reconcentration of cations (Nb5+, As5+, Hf4+, Cr3+, Al3+, Fe3+, Fe2+) in alteration minerals (white mica, chlorite) and Ti-bearing minerals reaction between hydrothermal fluid originated during ductile shear and Ti-bearing minerals (titanite, ilmenite and rutile) in wallrock.

The Evaluation of Food Service Menus in an Immigration Detention Center (외국인 보호소 급식 식단 품질에 대한 인식 및 만족도)

  • Kim, Hye-Jin;Kim, Woon Joo;Lee, Young Eun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.2
    • /
    • pp.286-305
    • /
    • 2013
  • The purpose of this study was to investigate the recognition and satisfaction with the menu quality of food services in an immigration detention center. The survey was conducted from January 22, 2010 to April 22, 2010 by questionnaires. A survey with 265 respondents was conducted and data analyzed by the SAS Program. In analyzing leftovers, the most common was kimchi (37.61%), followed by breads (21.52%), and beans/bean curd (17.99%). The common cause for leftover were undesirable taste (31.84%), sickness or a lack of desire for eating (19.85%). In terms of cooking methods, stir-frying, broiling, and frying were highly preferred to steaming, boiling, and salting. In the analysis of preferences in the taste and satisfaction of food service, there were significant differences in hot, sour, bitter, and light tastes (p<0.05, p<0.01, p<0.001). Satisfaction was low with hot and light tastes, whereas sour and the bitter tastes showed a high degree of satisfaction. In the opinions for quality improvement, most immigrants wanted a tastier food supply (58.69%), a diverse food supply (40.54%), and clean utensils (36.68%). In the analysis of the gap between importance and performance, food taste, variety, and sanitation were recognized as poorly performed, causing major dissatisfaction with the food. The overall satisfaction score was 'average' (3 points out of 5 points) with 3.26 points. The satisfaction score showed insignificant difference depending on religions and duration of stay in Korea, but showed significant differences depending on nationality (p<0.001).

Stratigraphic response to tectonic evolution of sedimentary basins in the Yellow Sea and adjacent areas (황해 및 인접 지역 퇴적분지들의 구조적 진화에 따른 층서)

  • Ryo In Chang;Kim Boo Yang;Kwak won Jun;Kim Gi Hyoun;Park Se Jin
    • The Korean Journal of Petroleum Geology
    • /
    • v.8 no.1_2 s.9
    • /
    • pp.1-43
    • /
    • 2000
  • A comparison study for understanding a stratigraphic response to tectonic evolution of sedimentary basins in the Yellow Sea and adjacent areas was carried out by using an integrated stratigraphic technology. As an interim result, we propose a stratigraphic framework that allows temporal and spatial correlation of the sedimentary successions in the basins. This stratigraphic framework will use as a new stratigraphic paradigm for hydrocarbon exploration in the Yellow Sea and adjacent areas. Integrated stratigraphic analysis in conjunction with sequence-keyed biostratigraphy allows us to define nine stratigraphic units in the basins: Cambro-Ordovician, Carboniferous-Triassic, early to middle Jurassic, late Jurassic-early Cretaceous, late Cretaceous, Paleocene-Eocene, Oligocene, early Miocene, and middle Miocene-Pliocene. They are tectono-stratigraphic units that provide time-sliced information on basin-forming tectonics, sedimentation, and basin-modifying tectonics of sedimentary basins in the Yellow Sea and adjacent area. In the Paleozoic, the South Yellow Sea basin was initiated as a marginal sag basin in the northern margin of the South China Block. Siliciclastic and carbonate sediments were deposited in the basin, showing cyclic fashions due to relative sea-level fluctuations. During the Devonian, however, the basin was once uplifted and deformed due to the Caledonian Orogeny, which resulted in an unconformity between the Cambro-Ordovician and the Carboniferous-Triassic units. The second orogenic event, Indosinian Orogeny, occurred in the late Permian-late Triassic, when the North China block began to collide with the South China block. Collision of the North and South China blocks produced the Qinling-Dabie-Sulu-Imjin foldbelts and led to the uplift and deformation of the Paleozoic strata. Subsequent rapid subsidence of the foreland parallel to the foldbelts formed the Bohai and the West Korean Bay basins where infilled with the early to middle Jurassic molasse sediments. Also Piggyback basins locally developed along the thrust. The later intensive Yanshanian (first) Orogeny modified these foreland and Piggyback basins in the late Jurassic. The South Yellow Sea basin, however, was likely to be a continental interior sag basin during the early to middle Jurassic. The early to middle Jurassic unit in the South Yellow Sea basin is characterized by fluvial to lacustrine sandstone and shale with a thick basal quartz conglomerate that contains well-sorted and well-rounded gravels. Meanwhile, the Tan-Lu fault system underwent a sinistrai strike-slip wrench movement in the late Triassic and continued into the Jurassic and Cretaceous until the early Tertiary. In the late Jurassic, development of second- or third-order wrench faults along the Tan-Lu fault system probably initiated a series of small-scale strike-slip extensional basins. Continued sinistral movement of the Tan-Lu fault until the late Eocene caused a megashear in the South Yellow Sea basin, forming a large-scale pull-apart basin. However, the Bohai basin was uplifted and severely modified during this period. h pronounced Yanshanian Orogeny (second and third) was marked by the unconformity between the early Cretaceous and late Eocene in the Bohai basin. In the late Eocene, the Indian Plate began to collide with the Eurasian Plate, forming a megasuture zone. This orogenic event, namely the Himalayan Orogeny, was probably responsible for the change of motion of the Tan-Lu fault system from left-lateral to right-lateral. The right-lateral strike-slip movement of the Tan-Lu fault caused the tectonic inversion of the South Yellow Sea basin and the pull-apart opening of the Bohai basin. Thus, the Oligocene was the main period of sedimentation in the Bohai basin as well as severe tectonic modification of the South Yellow Sea basin. After the Oligocene, the Yellow Sea and Bohai basins have maintained thermal subsidence up to the present with short periods of marine transgressions extending into the land part of the present basins.

  • PDF

A Study on Jeong Su-yeong's Handscroll of a Sightseeing Trip to the Hangang and Imjingang Rivers through the Lens of Boating and Mountain Outings (선유(船遊)와 유산(遊山)으로 본 정수영(鄭遂榮)의 《한임강유람도권》 고찰)

  • Hahn, Sangyun
    • MISULJARYO - National Museum of Korea Art Journal
    • /
    • v.96
    • /
    • pp.89-122
    • /
    • 2019
  • In this paper, I argue that the Handscroll of a Sightseeing Trip to the Hangang and Imjingang Rivers by Jeong Su-yeong (1743~1831, pseudonym: Jiwujae) is a record of his private journeys to several places on the outskirts of Hanyang (present-day Seoul) and that it successfully embodies the painter's subjective perspective while boating on these rivers and going on outings to nearby mountains. Around 1796, Jeong Su-yeong traveled to different places and documented his travels in this 16-meter-long handscroll. Several leaves of paper, each of which depicts a separate landscape, are pieced together to create this long handscroll. This indicates that the Handscroll of a Sightseeing Trip to the Hangang and Imjingang Rivers reflected the painter's personal subjective experiences as he went along his journey rather than simply depicts travel destinations. The Handscroll of a Sightseeing Trip to the Hangang and Imjingang Rivers features two types of travel: boating and mountain outings on foot. Traveling by boat takes up a large portion of the handscroll, which illustrates the channels of the Hangang and Imjingang Rivers. Mountain outings correspond to the sections describing the regions around Bukhansan, Gwanaksan, and Dobongsan Mountains. Jeong Su-yeong traveled to this wide span of places not just once, but several times. The fact that the Hangang River system are not presented in accordance with their actual locations shows that they were illustrated at different points. After visiting the riversides of the Hangang and Namhangang Rivers twice, Jeong Su-yeong delineated them in fourteen scenes. Among them, the first eight illustrate Jeong's initial trip by boat, while the other six scenes are vistas from his second trip. These fourteen scenes occupy half of this handscroll, indicating that the regions near the Hangang River are painted most frequently. The scenes of Jeong Su-yeong's first boating trip to the system of the Hangang River portray the landscapes that he personally witnessed rather than famous scenes. Some of the eight scenic views of Yeoju, including Yongmunsan Mountain, Cheongsimru Pavilion, and Silleuksa Temple, are included in this handscroll. However, Jeong noted spots that were not often painted and depicted them using an eye-level perspective uncommon for illustrating famous scenic locations. The scenes of Jeong's second boating trip include his friend's villa and a meeting with companions. Moreover, Cheongsimru Pavilion and Silleuksa Temple, which are depicted in the first boating trip, are illustrated again from different perspectives and in unique compositions. Jeong Su-yeong examined the same locations several times from different angles. A sense of realism is demonstrated in the scenes of Jeong's first and second boating trips to the channels of the Hangang River, which depict actual roads. Furthermore, viewers can easily follow the level gaze of Jeong from the boat. The scenes depicting the Imjingang River begin from spots near the Yeongpyeongcheon and Hantangang Rivers and end with places along the waterways of the Imjingang River. Here, diverse perspectives were applied, which is characteristic of Imjingang River scenes. Jeong Su-yeong employed a bird's-eye perspective to illustrate the flow of a waterway starting from the Yeongpyeongcheon River. He also used an eye-level perspective to highlight the rocks of Baegundam Pool. Thus, depending on what he wished to emphasize, Jeong applied different perspectives. Hwajeogyeon Pond located by the Hantangang River is illustrated from a bird's-eye perspective to present a panoramic view of the surroundings and rocks. Similarly, the scenery around Uhwajeong Pavilion by the Imjingang River are depicted from the same perspective. A worm's-eye view was selected for Samseongdae Cliff in Tosangun in the upper regions of the Imjingang River and for Nakhwaam Rock. The scenes of Jeong Su-yeong's mountain outings include pavilions and small temple mainly. In the case of Jaeganjeong Pavilion on Bukhansan Mountain, its actual location remains unidentified since the pavilion did not lead to the route of the boating trip to the system of the Hangang River and was separately depicted from other trips to the mountains. I speculate that Jaeganjeong Pavilion refers to a pavilion either in one of the nine valleys in Wooyi-dong at the foot of Bukhansan Mountain or in Songajang Villa. Since these two pavilions are situated in the valleys of Bukhansan Mountain, their descriptions in written texts are similar. As for Gwanaksan Mountain, Chwihyangjeong and Ilganjeong Pavilions as well as Geomjisan Mountain in the Bukhansan Mountain range are depicted. Ilganjeong Pavilion was a well-known site on Gwanaksan that belonged to Shin Wi. In this handscroll, however, Jeong Su-yeong recorded objective geographic information on the pavilion rather than relating it to Shin Wi. "Chwihyangjeong Pavilion" is presented within the walls, while "Geomjisan Mountain" is illustrated outside the walls. Handscroll of a Sightseeing Trip to the Hangang and Imjingang Rivers also includes two small temples, Mangwolam and Okcheonam, on Dobongsan Mountain. The actual locations of these are unknown today. Nevertheless, Gungojip (Anthology of Gungo) by Yim Cheonsang relates that they were sited on Dobongsan Mountain. Compared to other painters who stressed Dobong Seowon (a private Confucian academy) and Manjangbong Peak when depicting Dobongsan Mountain, Jeong Su-yeong highlighted these two small temples. Jeong placed Yeongsanjeon Hall and Cheonbong Stele in "Mangwolam small temple" and Daeungjeon Hall in front of "Okcheonam small temple." In addition to the buildings of the small temple, Jeong drew the peaks of Dobongsan Mountain without inscribing their names, which indicates that he intended the Dobongsan peaks as a background for the scenery. The Handscroll of a Sightseeing Trip to the Hangang and Imjingang Rivers is of great significance in that it embodies Jeong Su-yeong's personal perceptions of scenic spots on the outskirts of Hanyang and records his trips to these places.

A Study on Rationalization of National Forest Management in Korea (국유림경영(國有林經營)의 합리화(合理化)에 관(關)한 연구(硏究))

  • Choi, Kyu-Ryun
    • Journal of Korean Society of Forest Science
    • /
    • v.20 no.1
    • /
    • pp.1-44
    • /
    • 1973
  • Needless to say, the management of national forest in all countries is very important in view of the national mission and management purposes. Korean national forest is also in particular significant in promoting national economy for the continuous increasing of the demand for wood, conservation of the land and social welfare. But there's no denying the fact that the leading aim of the Korean forest policy has been based upon the conservation of forest resources and recovery of land conservation function instead of improvement of the forest productive capacity. Therefore, the management of national forest should be aimed as an industry in the chain of the Korean national economy. And the increment of the forest productive capacity based on rationalized forest management is also urgently needed. Not only the increment of the timber production but also the establishment of the good forest in quality and quantity are to bring naturally many functions of conservation and other public benefits. In 1908 Korean national forest was historically established for the first time as a result of the notification for ownership, and was divided into two kinds in 1911-1924, such as indisposable national forest for land conservation, forest management, scientific research and public welfare, and the other national forest to be disposed. Indisposable forest is mostly under the jurisdiction of national forest stations (Chungbu, Tongbu, Nambu), and the tother national forests are under custody of respective cities and provinces, and under custody of the other government authorities. As of the end of 1971, national forest land is 19.5% (1,297,708 ha) of the total forest land area, but growing stock is 50.1% ($35,406,079m^3$) of the total forest growing stock, and timber production of national forest is 23.6% ($205,959m^3$) of the year production of total timber in Korea. Accordingly, it is the important fact that national forest occupies the major part of Korean forestry. The author positively affirms that success or failure of the management of national forest controls rise or fall of forestry in Korea. All functions of forest are very important, but among others the function of timber production is most important especially in Korea, that unavoidably imports a large quantity of foreign wood every year (in 1971 import of foreign wood-$3,756,000m^3$, 160,995,000 dollars). So, Korea urgently needs the improvement of forest productive capacity in national forest. But it is difficult that wood production meets the rapid increase of demand for wood to the development of economy, because production term of forestry is long, so national forest management should be rationalized by the effective investment and development of forestry techniques in the long view. Although Korean national forest business has many difficulties in the budget, techniques and the lack of labour due to outflow of rural village labour by development of national economy, and the increase of labour wages and administrative expenses etc. the development of national forest depends on adoption of the suitable forest techniques and management adapted for social and economical development. In this view point the writer has investigated and analyzed the status of the management of national forest in Korea to examine the irrational problems and suggest an improvement plan. The national forestry statistics cited in this study is based on the basic statistics and the statistics of the forest business as of the end of 1971 published by Office of Forestry, Republic of Korea, and the other depended on the data presented by the national forest stations. The writer wants to propose as follows (seemed to be helpful in improvement of Korean national forest management). 1) In the organization of national forest management, more national forest stations should be established to manage intensively, and the staff of working plan officials should be strengthened because of the importance of working plan. 2) By increasing the staff of protection officials, forest area assigned for each protection official should be decreased to 1,000-2,000 ha. 3) The frequent personnel changes of supervisor of national forest station(the responsible person on-the-spot) obstructs to accomplish the consistent management plan. 4) In the working plan drafting for national forest, basic investigations should be carefully practiced with sufficient expenditure and staff not to draft unreal working plan. 5) The area of working-unit should be decreased to less than 2,000 ha on the average for intensive management and the principle of a working-unit in a forest station should be realized as soon as possible. 6) Reforestation on open land should be completed in a short time with a debt of the special fund(a long term loan), and the land on which growing hardwood stands should be changed with conifers to increase productivity per unit area, and at the same time techical utilization method of hardwood should be developed. 7) Expenses of reforestation should be saved by mechanization and use of chemicals for reforestation and tree nursery operation providing against the lack of labour in future. 8) In forest protection, forest fire damage is enormous in comparison with foreign countries, accordingly prevention system and equipment should be improved, and also the minimum necessary budget should be counted up for establishment and manintenance of fire-lines. 9) Manufacture production should be enlarged to systematize protection, processing and circulation of forest business, and, by doing this, mich benefit is naturally given for rural people. 10) Establishment and arrangement of forest road networks and erosion control work are indispensable for the future development of national forest itself and local development. Therefore, these works should be promoted by the responsibility of general accounting instead of special accounting. 11) Mechanization of forest works should be realized for exploiting hinterlands to meet the demand for timber increased and for solving lack of labour, consequently it should promote import of forest machines, home production, training for operaters and careful adminitration. 12) Situation of labour in future will grow worse. Therefore, the countermeasure to maintain forest labourers and pay attention to public welfare facilities and works should be considered. 13) Although the condition of income and expenditure grows worse because of economical change, the regular expenditure should be fixed. So part of the surplus fund, as of the end of 1971, should be established for the fund, and used for enlarging reforestation and forest road networks(preceding investment in national forest).

  • PDF