• Title/Summary/Keyword: 계면 인성

Search Result 75, Processing Time 0.018 seconds

Studies on Cure Behavior and Rheological Properties of Tetrafunctional Epoxy/Biodegradable MAP Blends (4관능성 에폭시/생분해성 MAP 블렌드의 경화 거동 및 유변학적 특성에 관한 연구)

  • 박수진;김승학;이재락;김봉섭;홍성원
    • Polymer(Korea)
    • /
    • v.26 no.6
    • /
    • pp.767-777
    • /
    • 2002
  • In this work, biodegradable modified aliphatic polyester (MAP) in tetrafunctional epoxy (4EP) resin was investigated in terms of cure kinetics, thermal stabilities, rheological properties, and mechanical interfacial properties. DSC results of the blends show that the cure activation energies (E$\_$a/) were increased in 10 wt% of MAP compared with neat 4EP, due to the increasing intermolecular interaction between 4EP and MAP. The decomposed activation energies (E$\_$t/) derived from Coats-Redfern method, were increased within the 10∼30 wt% composition range of MAP contents, resulting from increasing the cross-linking density of the blend system. Rheological properties of the blend system were investigated under isothermal condition using a rheometer. Cross-linking activation energies (E$\_$c/) were determined from the Arrhenius equation based on gel time and curing temperature. As a result, the E$\_$c/ showed a similar behavior with E$\_$a/. The fracture toughness (K$\_$IC/) of the mechanical interfacial properties was discussed in semi-IPN behaviors of the casting specimen.

An Experimental Study on Mechanical Properties of Ultra-High Strength Powder Concrete (압축강도 300MPa 이상의 초고강도 분체콘크리트 개발을 위한 실험적 연구)

  • Jo, Byung-Wan;Yoon, Kwang-Won;Park, Jung-Hoon;Kim, Heoun
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.287-295
    • /
    • 2010
  • In this study, ordinary Portland cement was used and the air void was minimized by using minute quartz as the filler. In addition, steel fibers were used to mitigate the brittle failure problem associated with high strength concrete. This study is in progress to make an Ultra-high strength powdered concrete (UHSPC) which has compressive strength over 300 MPa. To increase the strength of concrete, we have compared and analyzed the compressive strengths of the concretes with different mix proportions and curing conditions by selecting quartz sand, dolomite, bauxite, ferro silicon which have diameters less than 0.6 mm and can increase the bond strength of the transition zone. Ultra-high strength powdered concrete, which is different from conventional concrete, is highly influenced by the materials in the mix. In the study, the highest compressive strength of the powdered concrete was obtained when it is prepared with ferro silicon, followed in order by Bauxite, Dolomite, and Quartz sand. The amount of ferro silicon, when the highest strength was obtained, was 110%, of the weight of the cement. SEM analysis of the UHSPC showed that significant formation of C-S-H and Tobermorite due to high temperature and pressure curing. Production of Ultrahigh strength powdered concrete which has 28-day compressive strength upto 341MPa has been successfully achieved by the following factors; steel fiber reinforcement, fine particled aggregates, and the filling powder to minimize the void space, and the reactive materials.

Thermal Stability and Behavior of Isothermal Crystallization in Fe-P-C-B-(AI-Ge) Amorphous Alloys (Fe-P-C-B-(AI-Ge)계 비정질합금의 열적 안정성과 등온결정화 거동)

  • Jeon, U-Yong;Guk, Jin-Seon;Bae, In-Seong;Seol, Gyeong-Won
    • Korean Journal of Materials Research
    • /
    • v.8 no.11
    • /
    • pp.1026-1030
    • /
    • 1998
  • Thermal properties of Fe- base amorpous alloys were investigated. $Fe_{80}P_6C_{12}B_{12}$ and $Fe_{73}P_{11}C_6B_4AI_4Ge_2$ amorphous alloys were fabricated by melt spinning method and thermal analysis was done by differential scanning calorimeter. After isothermal crystallization. the Avrami exponents of $Fe_{80}P_6C_{12}B_{12}$ and $Fe_{73}P_{11}C_6B_4AI_4Ge_2$ amorphous alloys were 1.8-2.2 and 2.5-4.0, respectively. It means the former alloy shows diffusion controlled growth and the latter one shows interface controlled growth. For $Fe_{80}P_6C_{12}B_{12}$ and $Fe_{73}P_{11}C_6B_4AI_4Ge_2$ amorphous alloys. the activation energies of isothermal crystallization was 353 and 371kJlmol. Also the activation energies of nucleation and growth were 301, 324kJlmol and 273. 30lkJ/mol, respectively. Thus $Fe_{73}P_{11}C_6B_4AI_4Ge_2$ amorphous alloy is considered to be more stable than $Fe_{73}P_{11}C_6B_4AI_4Ge_2$ amorphous alloy.

  • PDF

Sensory Evaluation of Quality and Constructability of Cement Mortar for Tile Direct Setting Method Depending on Mix Proportions (타일 떠붙임 시멘트 모르타르의 배합비 변화에 따른 품질 특성 및 시공성에 대한 관능 평가)

  • Hwang, Yin-Seong;Ki, Tae-Kyoung;Han, Dong-Yeop;Noh, Sang-Kyun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.1
    • /
    • pp.11-19
    • /
    • 2021
  • The aim of the research is providing a fundamental data on quality and constructability of direct tile setting method depending on various cement to sand ratio for tiling dry cement mortar. A large number of tile setting failures reported is related with the cement mortar and its construction for tiling. Because of different materials of tiles, the properties of tiling dry cement mortar, an adhesive for tiling, can influence on quality and constructability of tiling differently. Practically, the easiest way of controlling the properties of the tiling dry cement mortar is to control the proportion of cement and sand. Hence, in this research, sand to cement ratio (S/C) was controlled. Since there is no standarized method on evaluating performance of dry cement mortar for tiling, a several sensory evaluation methods were suggested and executed. According to the experiments conducted in this research, the adhesive performance of cement mortar for tiles can be different depending on the sides such as tile and substrate. Additionally, depending on S/C, finishability, initial adhesive performance, and tile shifting resistance can be changed for ceramic tile. Therefore, under the conditions of this research, about 5 of S/C can be recommended for appropriate performace of tiling dry cement mortar.

The fracture resistance of heat pressed ceramics with wire reinforcement (금속선 강화에 따른 열 가압 도재의 파절저항)

  • Jo, Deuk-Won;Dong, Jin-Keun;Oh, Sang-Chun;Kim, Yu-Lee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.2
    • /
    • pp.191-198
    • /
    • 2009
  • Statement of problem: Ceramics have been important materials for the restoration of teeth. The demands of patients for tooth-colored restorations and the availability of various dental ceramics has driven the increased use of new types of dental ceramic materials. Improved physical properties of theses materials have expanded its use even in posterior crowns and fixed partial dentures. However, ceramic still has limitation such as low loading capability. This is critical for long-span bridge, because bridge is more subject to tensile force. Purpose: The wire reinforced ceramic was designed to increase the fracture resistance of ceramic restoration. The purpose of this study was to evaluate the fracture resistance of wire reinforced ceramic. Material and methods: Heat pressed ceramic(ingot No.200 : IPS Empress 2, Ivoclar Vivadent, Liechtenstein) and Ni-Cr wire(Alfa Aesar, Johnson Matthey Company, USA) of 0.41 mm diameter were used in this study. Five groups of twelve uniform sized ceramic specimens(width 4 mm, thickness 2 mm, length 15 mm) were fabricated. Each group had different wire arrangement. Wireless ceramic was used as control group. The experimental groups were divided according to wire number and position. One, two and three strands of wires were positioned on the longitudinal axis of specimen. In another experimental group, three strands of wires positioned on the longitudinal axis and five strands of wires positioned on the transverse axis. Three-point bending test was done with universal testing machine(Z020, Zwick, Germany) to compare the flexural modulus, flexural strength, strain at fracture and fracture toughness of each group. Fractured ceramic specimens were cross-sectioned with caborundum disc and grinded with sandpaper to observe interface between ceramic and Ni-Cr wire. The interface between ceramic and Ni-Cr wire was analyzed with scanning electron microscope(JSM-6360, JEOL, Japan) under platinum coating. Results: The results obtained were as follows: 1. The average and standard deviation in flexural modulus, flexural strength and fracture toughness showed no statistical differences between control and experimental groups. However, strain was significantly increased in wire inserted ceramics(P<.001). 2. Control group showed wedge fracture aspects across specimen, while experimental groups showed cracks across specimen. 3. Scanning electron microscopic image of cross-sectioned and longitudinally-sectioned specimens showed no gap at the interface between ceramic and Ni-Cr wire. Conclusion: The results of this study showed that wire inserted ceramics have a high strain characteristic. However, wire inserted ceramics was not enough to use at posterior area of mouth in relation to flexural modulus and flexural strength. Therefore, we need further studies.