• Title/Summary/Keyword: 계면단

Search Result 165, Processing Time 0.024 seconds

Evaluation of marginal leakage of bulk fill flowable composite resin filling with different curing time using micro-computed tomography technology (Bulk fill 유동성 복합레진의 변연 누출에서 다른 중합시간의 영향에 대해 마이크로시티를 이용한 평가)

  • Kim, Eun-Ji;Lee, Kyu-Bok;Jin, Myoung-Uk
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.32 no.3
    • /
    • pp.184-193
    • /
    • 2016
  • Purpose: To evaluate marginal leakage of bulk fill flowable composite resin filling with different curing time by using microcomputed tomography technology. Materials and Methods: 30 previously extracted human molars were randomly divided into 6 groups based upon restorative system and different curing time. Class II cavities (vertical slot cavities) were prepared. An individual metallic matrix was used to build up the proximal wall. The SonicFill or SureFil SDR flow was inserted into the preparation by using 1 bulk increment, followed by light polymerization for different curing times. The different exposure times were 20, 40, and 60 seconds. All specimens were submitted to 5,000 thermal cycles for artificial aging. Micro-CT scanning was performed by using SkyScan 1272. One evaluator assessed microleakage of silver nitrated solution at the resin-dentin interface. The 3D image of each leakage around the restoration was reconstructed with CT-Analyser V.1.14.4. The leakage was analyzed with the Mann-Whitney test. Results: Significant differences were observed between the light curing times, but no significant differences were found between the bulk fill composite resins. Increasing in the photoactivation time resulted in greater microleakage in all the experimental groups. Those subjected to 60 seconds of light curing showed higher microleakage means than those exposed for 20 seconds and 40 seconds. Conclusion: Increasing the photoactivation time is factor that may increase marginal microlekage of the bulk fill composite resins. Further, micro-CT can nondestructively detect leakage around the resin composite restoration in three dimensions.

Study of Multi-stacked InAs Quantum Dot Infrared Photodetectors Grown by Metal Organic Chemical Vapor Deposition (유기금속화학기상증착법을 이용한 적층 InAs 양자점 적외선 수광소자 성장 및 특성 평가 연구)

  • Kim, Jung-Sub;Ha, Seung-Kyu;Yang, Chang-Jae;Lee, Jae-Yel;Park, Se-Hun;Choi, Won-Jun;Yoon, Eui-Joon
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.3
    • /
    • pp.217-223
    • /
    • 2010
  • We grew multi-stacked InAs/$In_{0.1}Ga_{0.9}As$ DWELL (dot-in-a-well) structure by metal organic chemical vapor deposition and investigated optical properties by photoluminescence and I-V characteristics by dark current measurement. When stacking InAs quantum dots (QDs) with same growth parameter, the size and density of QDs were changed, resulting in the bimodal emission peak. By decreasing the flow rate of TMIn, we achieved the uniform multi-stacked QD structure which had the single emission peak and high PL intensity. As the growth temperature of n-type GaAs top contact layer (TCL) is above $600^{\circ}C$, the PL intensity severely decreased and dark current level increased. At bias of 0.5 V, the activation energy for temperature dependence of dark current decreased from 106 meV to 48 meV with increasing the growth temperature of n-type GaAs TCL from 580 to $650^{\circ}C$. This suggest that the thermal escape of bounded electrons and non-radiative transition become dominant due to the thermal inter-diffusion at the interface between InAs QDs and $In_{0.1}Ga_{0.9}As$ well layer.

Consideration of Engineering Strength and Filling Characteristics for Rubble-Ground Modification Method with Grout Injection (그라우트 주입식 사석기초 보강 공법의 개량체 강도 및 충전성에 대한 실험적 검토)

  • Kim, Hyeong-Ki;Han, Jin-Gyu;Kim, Jeong Eun;Ryu, Yong-Sun;Nguyen, Anh Dan;Kang, Gyeong-O;Kim, Young-Sang
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.5
    • /
    • pp.47-59
    • /
    • 2022
  • A series of experiments were performed to investigate the design and application of a rubble-ground modification method with grout injection. A small-sized injection machine was designed, and the grouts with various mix proportions were injected into 25 mm aggregate using the designed small-sized injection machine. With the compressive strength of the grout ranging from 20 to 80 MPa, the uniaxial compressive strength of the grout-filling bodies with clean gravels was higher than 1/6th of the strength of grouts themselves. However, this fraction may reduce depending on the interface conditions. The erosion resistance of the hardened grout was evaluated, and it was determined that the grout with a strength greater than 15 MPa did not require erosion consideration. Moreover, a full-scale injection test was performed for 25 cm-sized rubbles in cages with a diameter greater than 1 m and a height of 1.2 m to evaluate the filling characteristics of the grout. Results from this test indicated that the grout flowability sensitively influenced the filling characteristics.

Covalent Organic Framework Based Composite Separation Membrane: A Review (공유 유기 골격체 기반 복합 분리막 : 고찰)

  • Jeong Hwan Shim;Rajkumar Patel
    • Membrane Journal
    • /
    • v.33 no.4
    • /
    • pp.149-157
    • /
    • 2023
  • Covalent organic frameworks (COFs) have shown promise in various applications, including molecular separation, dye separation, gas separation, filtration, and desalination. Integrating COFs into membranes enhances permeability, selectivity, and stability, improving separation processes. Combining COFs with single-walled carbon nanotubes (SWCNT) creates nanocomposite membranes with high permeability and stability, ideal for dye separation. Incorporating COFs into polyamide (PA) membranes improves permeability and selectivity through a synthetic interfacial strategy. Three-dimensional COF fillers in mixed-matrix membranes (MMMs) enhance CO2/CH4 separation, making them suitable for biogas upgrading. All-nanoporous composite (ANC) membranes, which combine COFs and metal-organic framework (MOF) membranes, overcome permeance-selectivity trade-offs, significantly improving gas permeance. Computational simulations using hypothetical COFs (hypoCOFs) demonstrate superior CO2 selectivity and working capacity relevant for CO2 separation and H2 purification. COFs integrated into thin-film composite (TFC) and polysulfonamide (PSA) membranes enhance rejection performance for organic contaminants, salt contaminants, and heavy metal ions, improving separation capabilities. TpPa-SO3H/PAN covalent organic framework membranes (COFMs) exhibited superior desalination performance compared to traditional polyamide membranes by utilizing charged groups to enable efficient desalination through electrostatic repulsion, suggesting their potential for ionic and molecular separations. These findings highlight COFs' potential in membrane technology for enhanced separation processes by improving permeability, selectivity, and stability. In this review, COF applied for the separation process is discussed.

Purification of Complement System-Activating Polysaccharide from Hot Water Extract of Young Stems of Cinnamomum cassia Blume (계지(桂枝) 열수추출물로부터 보체계 활성화 다당의 정제)

  • Kweon, Mee-Hyang;An, Hyun-Jung;Shin, Kwang-Soon;Na, Gyeong-Su;Sung, Ha-Chin;Yang, Han-Chul
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.1-8
    • /
    • 1997
  • A complement system-activating (anti-complementary) polysaccharide was purified from the hot water extract of young stems of Cinnamomum cassia Blume. Crude polysaccharide fraction (CC-1) was prepared from the hot water extract of the young stems followed by methanol-reflux, precipitation with ethanol, dialysis, and lyophilization. The anti-complementary activity of CC-1 was decreased greatly by periodate oxidation, but was not changed by pronase digestion. These suggest that carbohydrate moiety may be related to the activation of complement system. According to its ionic strength CC-1 was fractionated first using cetavlon to give 4 fractions, CC-2, 3, 4 and 5. Among them CC-2 fraction was found to retain the highest activity and yield. CC-2 was separated to an unabsorbed neutral sugar portion (CC-2-I) and seven absorbed acidic sugar fractions $(CC-2-II{\rightarrow}CC-2-VIII)$ on DEAE-Toyopearl 650C (Cl-). CC-2-III showing higher anti-complementary activity and yield than those of other fractions, was further purified on the gel permeation of Sephadex G-100 and Sepharose CL-6B to CC-2-IIIa-3. CC-2-IIIa-3 was determined to have a homogeneity hy GPC (Sepharose CL-6B) and HPLC. Gel chromatography using standard dextrans gave a value of $2.4{\times}10^5$ for the molecular weight. The purified polysaccharide, CC-2-IIIa-3 consisted of arabinose, xylose, glucose, galactose, galacturonic acid and glucuronic acid in a molar ratio of 5.56 : 3.77 : 1.87 : 1.00 : 5.12 : 3.13 and contained no nitrogen.

  • PDF