DOI QR코드

DOI QR Code

Consideration of Engineering Strength and Filling Characteristics for Rubble-Ground Modification Method with Grout Injection

그라우트 주입식 사석기초 보강 공법의 개량체 강도 및 충전성에 대한 실험적 검토

  • Received : 2022.05.03
  • Accepted : 2022.05.20
  • Published : 2022.05.31

Abstract

A series of experiments were performed to investigate the design and application of a rubble-ground modification method with grout injection. A small-sized injection machine was designed, and the grouts with various mix proportions were injected into 25 mm aggregate using the designed small-sized injection machine. With the compressive strength of the grout ranging from 20 to 80 MPa, the uniaxial compressive strength of the grout-filling bodies with clean gravels was higher than 1/6th of the strength of grouts themselves. However, this fraction may reduce depending on the interface conditions. The erosion resistance of the hardened grout was evaluated, and it was determined that the grout with a strength greater than 15 MPa did not require erosion consideration. Moreover, a full-scale injection test was performed for 25 cm-sized rubbles in cages with a diameter greater than 1 m and a height of 1.2 m to evaluate the filling characteristics of the grout. Results from this test indicated that the grout flowability sensitively influenced the filling characteristics.

본 연구에서는 사석지반 충진을 위한 그라우트 주입공법의 설계 및 시공에 대한 일련의 기초 실험을 진행하였다. 먼저 소형 그라우트 주입장치를 설계제작해 25mm 단입도 골재에 수중주입 하였다. 이 축소실험 결과, 그라우트의 압축강도 범위가 20-80MPa 수준일 때, 표면이 깨끗한 자갈을 그라우트로 보강한 개량체의 일축압축강도는 그라우트 자체의 강도에 비해 약 1/6 수준이었다. 하지만, 이 개량체의 강도는 골재 계면의 조건에 따라 크게 감소할 수 있음을 확인하였다. 또한, 개량체용 그라우트의 수중마모 저항성을 평가하였으며, 실험결과 15MPa 이상의 그라우트는 유수에 의한 마모를 고려하지 않아도 되는 것으로 확인 되었다. 마지막으로 25cm 크기의 사석부에 지름 약 1m 높이 1.2m 수준의 대형 구근을 제작해 충전성을 검토하였으며, 이 결과 그라우트의 유동성에 의해 사석 충전성능이 크게 영향 받는다는 것을 알 수 있었다.

Keywords

Acknowledgement

본 논문은 해양수산부 해양수산과학기술진흥원(과제번호: 20180323) 및 국토교통부(21RITD-C162546-01)의 연구비 지원으로 수행된 연구이며, 연구비 지원에 감사드립니다.

References

  1. Kim, J-.S. and Park, H.Y. (2020), "FORENA THE ISLAND Project in Yeosu Woongcheon", Review of Architecture and Building Science, Vol.64, No.5, pp.83-86.
  2. Kim, B. I., Hong, K. H., Kim, J. H., and Han, S. J. (2019a), "The Study on Improvement Methods for The Seismic Performance of Port Structures", Journal of the Korean Geosynthetics Society, Vol.18, No.4, pp.151-165. https://doi.org/10.12814/JKGSS.2019.18.4.151
  3. Nguyen, A. D., Kim, Y. S., Kang, G. O., and Kim, H. J. (2021), "Numerical Analysis of Static behavior of Caisson-type Quay Wall Deepened by Grouting Rubble-mound", International Journal of Geo-Engineering, Vol.12, No.1, pp.1-16. https://doi.org/10.1080/19386362.2016.1235813
  4. Jung, H.-S., Seo, S.-H., Choi, H., and Lee, H. (2019), "Study on Applicability of CGS Method based on Field Experiments and Cavity Expansion Theory", Journal of the Korean GEO-Environmental Society, Vol.20, No.2, pp.19-28.
  5. Seo, S.-H., Lee, J.-S., Jung, E.-Y., Park, S.-Y., and Lee, H.-B. (2020), "Development and Reliability Verification of Quality Control System for Compaction Grouting Method", Journal of the Korean Geosynthetics Society, Vol.19, No.4, pp.11-20. https://doi.org/10.12814/JKGSS.2020.19.4.011
  6. Mizutani, T., Morikawa, Y., Watabe, Y., Kikuchi, Y., Gouda, K., Kato, S., and Ogasawara, T. (2013), "Technical Note 1277- Study on new construction method for deepening caisson-type quay walls", Port and Airport Research Institute (PARI), Japan.
  7. Silvester, R. (1986), "Use of Grout-filled Sausages in Coastal Structures", Journal of waterway, port, coastal, and ocean engineering, Vol.112, No.1, pp.95-114. https://doi.org/10.1061/(ASCE)0733-950X(1986)112:1(95)
  8. Chun, B. S., Lee, Y. J., and Chung, H. I. (2006), "Effectiveness of Leakage Control after Application of Permeation Grouting to Earth Fill Dam", KSCE Journal of Civil Engineering, Vol.10, No.6, pp.405-414. https://doi.org/10.1007/BF02823979
  9. Holmquist, D. V., Thomas, D. B., and Simon, K. (2003), "Subsidence Mitigation Using Void Fill Grouting", In Grouting and Ground Treatment, pp.1103-1114.
  10. Drissi, S., Mo, K. H., Falchetto, A. C., and Ling, T. C. (2021), "Understanding the Compressive Strength Degradation Mechanism of Cement-paste Incorporating Phase Change Material", Cement and Concrete Composites, Vol.124, pp.104249. https://doi.org/10.1016/j.cemconcomp.2021.104249
  11. Tafesse, M., Lee, N. K., Alemu, A. S., Lee, H. K., Kim, S. W., and Kim, H. K. (2021), "Flowability and Electrical Properties of Cement Composites with Mechanical Dispersion of Carbon Nanotube", Construction and Building Materials, Vol.293, pp.123436. https://doi.org/10.1016/j.conbuildmat.2021.123436
  12. van der Meer, J. W. (1995), "Conceptual Design of Rubble Mound Breakwaters", In Advances in Coastal and Ocean Engineering, Vol.1, pp.221-315.
  13. Takahashi, H. (2021), "Stability of Composite-type Breakwaters Reinforced by Rubble Embankment", Soils and Foundations, Vol. 61, No.2, pp.318-334. https://doi.org/10.1016/j.sandf.2020.10.011
  14. Morgan, S., Morgan, A., and Schultz, D. (2017), "Ground Improvement by Compaction Grouting in IHC5 and IHC7 Dolomitic Conditions", Civil Engineering= Siviele Ingenieurswese, Vol.2017, No.3, pp.53-58.
  15. Seo, S. Y., Nam, B. R., and Kim, S. K. (2016), "Tensile Strength of the Grout-filled Head-splice-sleeve", Construction and Building Materials, Vol.124, pp.155-166. https://doi.org/10.1016/j.conbuildmat.2016.07.028
  16. Lille, D. M. and March, A. V. (1970), "Problems in Rubble-filled Random Masonry Walls", WIT Transactions on The Built Environment, Vol.29.
  17. Kim, S.J. (2016), "Stability analysis for gravity quay wall with seismic performance enhanced by low slump mortar grouting", Ms. Thesis, Kyung Nam University.
  18. Denies, N., Van Lysebetten, G., Huybrechts, N., De Cock, F., Lameire, B., Maertens, J., and Vervoort, A. (2013), "Design of Deep Soil Mix Structures: Considerations on the UCS Characteristic Value", Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, Paris, France, Vol.3, pp.2465-2468.
  19. Cheon, B.S. and Yeo, Y.H. (2003), "A Study on the behavior Characteristics of Soft Clay Ground by C.G.S Method", Journal of the Korean Geotechnical Society, Vol.19, No.6, pp.307-323.
  20. Park, S., Hong, J., and Chun, B., (2013), "A Study on the Reinforcement Case of Bridge Foundation in the Limestone Cavity with CGS Method", Journal of the Korean Geo-Environmental Society, Vol.14, No.12, pp.43-52. https://doi.org/10.14481/jkges.2013.14.12.043
  21. Seo, S. H., Lee, J. S., Kang, W. D., and Jung, E. (2019), "Analysis of the Physical Properties of Ground before and After Low Flowing Grouting", Journal of the Korean Geosynthetics Society, Vol.18, No.4, pp.115-127. https://doi.org/10.12814/JKGSS.2019.18.4.115
  22. Briaud, J.L., Ting, F., Chen, H.C., Gudavalli, S. R., Perugu, S., and Wel, G. (1999), "SRICOS: Prediction of scour rate in cohesive soils at bridge piers", Journal of Geotechnical and Geo environmental Engineering, Vol.125, No.4, pp.237-246. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:4(237)
  23. Briaud, J. L. (2008), "Case Histories in Soil and Rock E rosion: Woodrow Wilson Bridge, Brazos River meander, Normandy Cliffs, and New Orleans Levees", Journal of Geotechnical and Geoenvironmental Engineering, Vol.134, No.10, pp.1425-1447. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:10(1425)
  24. Kim, Y. S., Kang, G. O., and Tsuchida, T. (2019b), "Experimental Evaluation of the Effect of the Incidence Angle and Consolidation Pressure on the Hydraulic Resistance Capacity of Clayey Soils", Soils and Foundations, Vol.59, No.1, pp.110-121. https://doi.org/10.1016/j.sandf.2018.09.007
  25. Ministry of Oceans and Fisheries (2018), "Strategy report on port facility maintenance system operation and disaster prevention", GOVP1201911875.