• Title/Summary/Keyword: 계면결합강도

Search Result 171, Processing Time 0.026 seconds

Measurement of Contact Angle and Bond Strength Using 3 Different Self-Etching Primer (3종의 자가부식 프라이머의 상아질계면 접촉각 및 미세인장결합강도에 관한 연구)

  • Chang, Seok-Woo;Kwon, Ho-Beom;Yoo, Hyun-Mi;Park, Dong-Sung;Oh, Tae-Seok;Bae, Kwang-Shik
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.24 no.1
    • /
    • pp.105-112
    • /
    • 2008
  • The purpose of this study was to evaluate the contact angle made by 3 kinds of self etching primers (Clearfil SE Bond, AdheSE, and Tyrian) on dentin and to measure the microtensile bond strength of resin composite to dentin using these self-etching primers. Contact angle between each of 3 self etching primers and polished dentin surface was measured (n=30) by contact angle analyzer and the result was analyzed by One-way ANOVA. For the measurement of microtensile bond strength, polished dentin surface was treated with each of 3 self etching primers and dentin adhesives. Z-250 composite resin was built-up with a height of 5 mm on the adhesive-treated surface and light cured for 40s with a halogen light curing unit. Thereafter, each tooth was sectioned into slabs perpendicular to the bonded interface and trimmed (n=45). The microtensile bond strength was measured with universal testing machine and the result was analyzed with Kruskal-Wallis test. AdheSE group showed the highest contact angle followed by Clearfil SE group and Tyrian group (p<0.05). AdheSE group and Clearfil SE group showed significantly higher microtensile bond strength than Tyrian group (P<0.05).

Effect of Surface Treatments of Titanium on Bond Strength and Interfacial Characterization in Titanium-Ceramic Prosthesis (티타늄의 표면처리방법에 따른 티타늄-세라믹 보철시편의 결합강도와 계면특성)

  • Chung, In-Sung;Kim, Chi-Young
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.10
    • /
    • pp.219-225
    • /
    • 2010
  • The bonding strength between titanium and ceramic were analyzed according to the bonding agent and the coating methods of Au and TiN respectively. The bonding strength was measured through the 3 point bending test. Consequently, the bonding strength of the special bonding agent after the TiN coated (SPTB) group was $72.20({\pm}5.25)MPa$ which was the strongest one among groups. The bonding strength of the special bonding agent treated only (SPB) group was $67.66({\pm}12.10)MPa$, the special bonding agent after the Au coating SPGB group was $46.95({\pm}12.48)MPa$ and the SP group was $43.80({\pm}5.12)MPa$. Taking these results into account, the bonding strength of the SPB group shows the same as it of the SPTB group, however, it is stronger than SP group. And the TiN coated SPTB group shows the stronger bonding strength than the Au coated SPGB group.

Treeing Breakdown Characteristics of Epoxy-Nanocomposites according to Silane Treatment (에폭시-나노콤포지트의 실란처리에 따른 트리잉파괴 특성에 관한 연구)

  • Park, Jae-Jun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.261-261
    • /
    • 2009
  • 층상실리케이트 나노입자를 포함한 에폭시수지인 나노콤포지트를 장시간 트리절연내력을 평가하기 위하여 제조하였다. 층살실리케이트를 포함하지 않은 경우보다 월등하게 긴 트리잉파괴 시간을 나타내었다. 더욱이 층상실리케이트 나노입자와 에폭시수지 계면의 효과를 연구하기위해 silane coupling agent을 나노입자에 표면처리하여 장시간 트리잉 파괴에 초점을 맞추었다. 에폭시수지와 층상실리케이트 나노입자사이 커플링 의한 계면결합은 단시간 절연파괴강도와 장시간 트리잉파괴 시간에 중요한 역할을 하고 있음을 알았다. 그 결과는 침선단에 교류 전계강도가 781.42kV/mm(교류 15kV, 침선단 곡률반경 $5{\mu}m$) 절연파괴시간을 측정한 결과 나노입자가 충진된 경우 트리개시시간이 24,726분이었고, 파괴에 이르는 시간은 29,213분이 걸렸다. 반면에 실란을 처리하지 않은 경우 파괴시간은 11,591분 이었다. 충진된 층살실리케이트 나노입자의 함량은 3wt%로 하였으며, 이와같은 파괴시간 지연 결과의 향상이 152%향상된 결과는 계면의 결합력이 크게 향상되어 나타낸 경우로 사료된다.

  • PDF

A Study on the Adhesion of DLC Films on the Various Substrates by PECVD Method (PECVD법으로 제조된 DLC박막의 기판에 따른 접착력에 관한 연구)

  • Choe, Won-Kyu;Choi, Woon;Kim, Hyoung-June;Nam, Seung-Eui
    • Korean Journal of Materials Research
    • /
    • v.7 no.7
    • /
    • pp.582-586
    • /
    • 1997
  • 본 연구에서는 플라즈마 화학 증착법으로 기판에 따른 DLC 박막의 접착력 변화를 조사하였다. 박막의 분리가 발생하기 시작하는 경우의 두께를 임계두께로 정하여 스크래치 테스터로 측정된 임계하중과 더불어 박막의 잡착강도값으로 사용하였다. 다이아몬드상 탄소박막은 실리콘 기판에서 가장 우수한 접착력을 가지는 것으로 나타났으며, 크롬>티타늄>철>세라믹 기판의 순으로 접착력이 감소하였다. XPS, AES 분석을 사용하여 계면에서 결합구조와 결합형태 등을 관찰하여 접착력과의 관계를 조사하였다. 그 결과 다이아몬드상 탄소박막의 접착강도는 막/기판의 계면에서의 탄화물 형성에 영향을 받으며, 계면에서의 초기산화물층에 큰 영향을 받는것을 확인하였다.

  • PDF

Strength, Absorption and Interfacial Properties of Mortar Using Waste Shells as Fine Aggregates (잔골재를 패각으로 치환한 모르터의 강도, 흡수율 및 계면 결합형태)

  • Moon, Hoon;Kim, Ji-Hyun;Lee, Jae-Yong;Chung, Chul-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.6
    • /
    • pp.523-529
    • /
    • 2014
  • Large amounts of waste shells have been produced each year from shellfish raising industries located in Korean costal areas. Due to the limited space for the waste shell disposal, the related environmental problem has been a serious issue. It is believed that using the waste shells as a source of aggregate for mortar, concrete or bricks can be a good solution. In this research, possibility of utilizing waste shells as an aggregate of mortar is investigated. Waste shells of manila clam, cockle, clam, sea mussel, and oyster were properly crushed, sieved, and sorted to meet the requirements of the grading of standard fine aggregate. After that, the waste shells were used as partial and total replacement of the fine aggregate, and their absorption and 28-day compressive strengths of mortar were measured. In general, replacement of waste shells increased the absorption and decreased the strength. However, one specimen with cockle increased compressive strength as replacement ratio increased. Mortar with cockle of 50% and 100% replacement showed higher compressive strength than that of control mortar. This increase of compressive strength was found to be affected by the strong interfacial bonding properties of the cockle and a cement matrix.

Fabrication of PP/Carbon Fiber Composites by Introducing Reactive Interphase and its Properties (반응성 고분자 계면상을 도입한 PP/탄소섬유 복합재료의 제조와 물성)

  • 김민영;김지홍;김원호;최영선;황병선
    • Polymer(Korea)
    • /
    • v.24 no.4
    • /
    • pp.556-563
    • /
    • 2000
  • In general, the development of thermoplastic composites has been confronted with difficult problems such as the weak bonding strength between fibers and matrix. However, now, such problems are being surmounted by the development of resins, the improvement of processes, and introduction of interphase. Especially, the introduction of interphase between fiber and matrix can help a dissipation of the impact energy and provide a good adhesion between fibers and matrix. In this study, polymeric interphase was introduced by electrodeposition, modified polypropylene was added to improve the weak bonding strength between interphase and polypropylene matrix. By evaluation of interlaminar shear strength and impact strength of the composites, it was found that composites with introduced composites showed higher mechanical properties than those of composites without interphase. Reactive polymers which have either anhydride or free acid functional group were used as interphase materials, and these polymers also behave as charge carrier in aqueous solution during the electrodeposition process. Weight gain on the carbon fibers was evaluated by changing process parameters such as concentration of solution, current density, and electrodeposition time.

  • PDF

Effects of Sizing Treatment of Carbon Fibers on Mechanical Interfacial Properties of Nylon 6 Matrix Composites (탄소섬유의 사이징처리가 탄소섬유/나일론6 복합재료의 기계적 계면 특성에 미치는 영향)

  • Park, Soo-Jin;Choi, Woong-Ki;Kim, Byung-Joo;Min, Byung-Gak;Bae, Kyong-Min
    • Elastomers and Composites
    • /
    • v.45 no.1
    • /
    • pp.2-6
    • /
    • 2010
  • The sizing treatments of PAN-based carbon fiber surfaces were carried out in order to improve the interfacial adhesion in the carbon fibers/nylon6 composite system. The parameter to characterize the wetting performance and surface free energy of the sized fibers were determined by a contact angle method. The mechanical interfacial properties of the composites were investigated using critical stress intensity factor ($K_{IC}$). The cross-section morphologies of sized CFs/nylon6composites were observed by SEM. As the experimental results, it was observed that silane-based sizing treated carbon fibers showed higher surface free energies than other sizing treatments. In particular, the KIC of the sizing-treated carbon fibers reinforced composites showed higher values than those of untreated carbon fibers-reinforced composites. This result indicated that the increase in the surface free energy of the fibers leads to the improvement of the mechanical interfacial properties of carbon fibers/nylon6 composites.

Shear Bond Strength and Interfacial Characterization of Ceramic to Beryllium Free Nonprecious Alloys for Porcelain Fused to Metal Crown (베릴륨이 포함되지 않은 도재용착용 비귀금속 합금과 세라믹간의 전단결합강도와 계면특성)

  • Chung, In-Sung;Kim, Chi-Young
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.11
    • /
    • pp.228-234
    • /
    • 2010
  • Ni-Cr and Co-Cr alloy uncontained Be element for using as dental porcelain alloy were analyzed the mechanical properties through bonding strength and fracture test after the bonding with porcelain. The bonding strengths between alloy and ceramic were measured through the shear bond strength test. Consequently, the T-3 group contained Be element that had shear strength of 41.13(${\pm}5.11$)MPa was showed the highest shear strength than the other groups. The second highest group was a verabond contained Be element that had shear strength of 40.72(${\pm}5.98$)MPa. The results of the other groups according to the shear strength were Wirobond(38.40(${\pm}9.66$)MPa) belonged to Co-Cr alloy, and Verabond 2V(32.77(${\pm}4.31$)MPa), Bellabond N(28.63(${\pm}6.39$)MPa), Bellabond plus(24.97(${\pm}6.13$)MPa), Argeloy N.P. Star(22.69(${\pm}3.41$)MPa) uncontained Be element, respectively. The morphological aspects of the fracture surface between alloys and ceramic were observed that all groups were caused mixed failure as conformation attached ceramic fragments to metallic surface by fracture process.

EFFECT OF CURING METHODS OF RESIN CEMENTS ON BOND STRENGTH AND ADHESIVE INTERFACE OF POST (레진시멘트의 중합방법이 포스트의 결합강도와 접착계면에 미치는 영향)

  • Kim, Mun-Hang;Kim, Hae-Jung;Cho, Young-Gon
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.2
    • /
    • pp.103-112
    • /
    • 2009
  • The purpose of this study was to compare the effect of curing methods of adhesive resins and resin cements in the root canal. Crown portions of 32 single-rooted mandibular premolars were removed. Routine endodontic treatment was done, and 9 mm deep post spaces were prepared within root canals. No.3 FRC Postec posts (Ivoclar-Vivadent AG, Liechtensteih) were cemented in the post spaces by self-(SC) or light-curing (LC) using two dual-cured adhesives (Adper Scotchbond multi-purpose plus and Exite DSC )and resin cements (RelyX ARC and Variolink II). They were assigned to 4 groups (n=8): R-SC, R-LC, V-SC, V-LC group. After stored in distilled water for 24 hours, each root was transversally sectioned with 1.5 mm thick and made three slices. The specimens were subjected to push-out test in a universal testing machine (EZ Test, Shimadzu Co., Japan) with a crosshead speed of 1 mm/min. The data were analyzed with repeated ANOVA and one-way ANOVA. Also the interface of post-resin cement and resin cement-canal wall of each group was observed under FE-SEM. When fiber posts were cemented into the root canal using total-etch adhesives, the bond strength and adaptation between post and root canal dentin was affected by curing method. Self-cure of adhesives and resin cements showed higher bond strength and closer adaptation than light-cure of them.

Interfacial Characteristics of Glass Fiber/Nylon 6 Composites (유리섬유/나일론 6 복합재료의 계면특성 연구)

  • Cho, D.;Yun, S.H.;Kim, J.;Lim, S.;Park, M.;Lee, S.-S.;Chung, H.K.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.252-256
    • /
    • 2002
  • 본 연구에서는 유리섬유/나일론 6 복합재료의 계면특성에 미치는 실란계 사이징제의 영향을 조사하기 위하여 microbonding test, short-beam shear test 그리고 dynamic mechanical analysis 방법을 사용하였다. 전자의 미시적인 방법과 후자의 두 가지 거시적인 접근 방법으로부터 얻은 유리섬유/나일론 6 복합재료의 계면특성에 대한 결과가 서로 일치하였다. 상업적으로 사이징 처리된 경우와 비교할 때, 본 연구에 적용된 네 종류의 실란계 사이징제는 유리섬유-나일론 6 수지의 계면결합력을 크게 향상시켰다. 특히, 3-chloropropyltrimethoxysilane (Z-6076)의 사용은 유리섬유/나일론 6 복합재료의 계면전단강도와 층간전단강도를 가장 두드러지게 증가시켰다.

  • PDF