• Title/Summary/Keyword: 계류선박

Search Result 159, Processing Time 0.026 seconds

Sliding Mode Control with Super-Twisting Algorithm for Surge Oscillation of Mooring Vessel System (슈퍼트위스팅 슬라이딩모드를 이용한 선박계류시스템의 동적제어)

  • Lee, Sang-Do;Lee, Bo-Kyeong;You, Sam-Sang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.7
    • /
    • pp.953-959
    • /
    • 2018
  • This paper deals with controlling surge oscillations of a mooring vessel system under large external disturbances such as wind, waves and currents. A control synthesis based on Sliding Mode Control (SMC) with a Super-Twisting Algorithm (STA) has been applied to suppress nonlinear surge oscillations of a two-point mooring system. Despite the advantages of robustness against parameter uncertainties and disturbances for SMC, chattering is the main drawback for implementing sliding mode controllers. First-order SMC shows convergence within the desired level of accuracy, in which chattering is the main obstacle related to the destructive phenomenon. Alternatively, STA completely eliminates chattering phenomenon with high accuracy even for large disturbances. SMC based on STA is an effective tool for the motion control of a nonlinear mooring system because it avoids the chattering problems of a first-order sliding mode controller. In addition, the error trajectories of controlled mooring systems implemented by means of STA form in the bounded region. Finally, the control gain effect of STA can be observed in sliding surface and position trajectory errors.

Development of Measurement System for the Safety Analysis of Moored Floating Matters (계류된 부유체의 안전성 평가를 위한 계측시스템 개발)

  • Seong, Yu-Chang;Kwak, Jae-Min
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.3
    • /
    • pp.201-208
    • /
    • 2014
  • Due to diversification of ships and limited space of pier, when ships come alongside the shallow water or narrow pier, sea area with small mooring facilities and floating matter is frequently applied. Through these, coming alongside the various space is capable and cost effectiveness is enhanced. However, when ships, applying small mooring facilities and floating matter, come alongside, there can be some impulse by waves between the floating things and ships which possibly leads to mass disaster. Therefore, there should be forecasts and analysis of the movement caused by waves. On this study, we develop measuring system for movement analysis of mooring and floating matters which provides base data with movement traits by measuring 3-D exercise information and acceleration at mokpo maritime university marina facility. Also, the composition and principles of the developed system is explained.

Measurement system developed for the analysis of Small mooring facilities, and Floating matters (계류된 부유체의 안전성 평가를 위한 계측시스템 개발)

  • Park, Kyung-Chul;Yang, Hye-Jung;Seong, Yu-Chang
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2013.06a
    • /
    • pp.252-254
    • /
    • 2013
  • When Coming alongside the shallow water or narrow pier, they apply sea area with small mooring facilities and Floating matter because of the diversity of ships and limitation and effective in cutting expenses. However, when ships, applying Small mooring facilities and Floating matter, come alongside, there can be some impulse by waves between the Floating things and ships which possibly leads to mass disaster. Therefore, there should be forecasts and analysis of the movement caused by waves. On this Study, it introduces the composition and principles of the developed system provides the base of the movement traits through measuring 3-D exercise data and acceleration of the Mooring and Floating matters.

  • PDF

Calculating the Mooring Force of a Large LNG Ship based on OCIMF Mooring Equipment Guidelines (OCIMF 계류설비지침 기반 대형 LNG선박 계류력 계산)

  • Wang, Jian;Noh, Jackyou
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.4
    • /
    • pp.594-600
    • /
    • 2022
  • When a large liquefied natural gas (LNG) carrier is anchored at a coastal terminal, calculations on mooring forces of mooring cables induced by environmental loads such as strong winds and currents are needed to secure mooring safety. The advantages and disadvantages of several existing mooring force calculation methods are compared and analyzed with their application conditions. Resultingly, mooring equipment guidelines of the Oil Companies International Marine Forum (OCIMF) are chosen as the computational method for this study. In this paper, the mooring forces of a large LNG carrier with spectrum was calculated using the OCIMF mooring equipment guidelines. The calculation shows similar maximum forces resulted from the calculation using experiment data of a wind tunnel test. To verify the results, OPTIMOOR, a dedicated mooring force calculation software, is used to calculate the same mooring conditions. The results of both calculations show that the computational method recommended by OCIMF is safe and reliable. OPTIMOOR calculates more detailed tensile force of each mooring cable. Thus, the calculation on mooring forces of mooring cables of a large LNG carrier using OCIMF mooring equipment guidelines is verified as an applicable and safe method.

Evaluation of Effective Working Days in a Harbor Considering Harbor Resonance and Moored Ship Motion (항만공진주기와 선박동요량을 고려한 항만가동율 산정)

  • Kwak, Moonsu;Moon, Yongho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.1
    • /
    • pp.14-24
    • /
    • 2015
  • This study proposed an estimation method of allowable wave height for loading and unloading of the ship and evaluation of effective working days considering moored ship motion that is affected by sip sizes, mooring conditions, wave periods and directions. The method was examined validity by comparison with wave field data at pier $8^{th}$ in Pohang New Harbor. The wave field data obtained with wave height of 0.10~0.75 m and wave period of 7~13 s in ship sizes of 800~35,000 ton when a downtimes have occurred. On the other hand, the results of allowable wave height for loading and unloading of the ship in this method have obtained with wave heights of 0.19~0.50 m and wave periods of 8~12 s for ship sizes of 5,000, 10,000 and 30,000 ton. Thus this method well reproduced the field data respond to various a ship sizes and wave periods. And the results of this in Korea are didn't respond to various the ship sizes and wave periods, and we h method tended to decrease in 16~62 percent when have considered long wave, and it is decreased in 0~46 percent when didn't consider long wave than design standards in case of the ship sizes of 5,000~30,000 ton, wave period of 12 s and wave angle of $75^{\circ}$. The allowable wave heights for loading and unloading of the ship proposed by design standards in Korea have found that overestimated on smaller than 10,000 ton. On the other hand, the rate of effective working days considering ship motion at pier $8^{th}$ in Pohang New Harbor reduced in 6.5 percent when compare with the results without considering ship motion.

신보령 1,2호기 해상교통안전진단 사례

  • Lee, Dong-Seop
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2012.06a
    • /
    • pp.323-325
    • /
    • 2012
  • 충남 보령시 오천면 인근해역에 건설될 신보령화력 1,2호기 건설사업과 관련하여 항만공사(연료하역부두, 석회석하역부두 축조)로 인하여 선박통항에 미치는 영향을 사전에 조사 측정 및 평가하여 설계에 반영토록 하고, 부두축조에 따른 대상 선박 항로 통항 및 접 이안에 대한 안전성 평가, 해상교통류 시뮬레이션, 계류안전성 평가 등을 시행하였으며, 이에 대한 결과를 소개하고자 한다.

  • PDF

해상교통안전진단 정량적 평가 방법에 대한 개선 방안 고찰

  • Yang, Yeong-Hun;Gong, In-Yeong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2012.10a
    • /
    • pp.217-218
    • /
    • 2012
  • 국토해양부 해상교통안전진단 시행지침에는 안전진단 항목으로 해상교통현황조사 및 측정, 혼잡도 분석, 선박조종시뮬레이션에 의한 통항 및 접이안 안전성 평가, 계류안전성 평가 등을 명시하고 있으며, 각 진단 항목별로 평가 방법 및 기준을 제시하고 있다. 해상교통안전진단 수행과정에서 이러한 평가 방법 및 기준에 대한 개선 방안 등을 고찰하였다.

  • PDF

A Study on the Estimation of Mooring Force of the T/S HANBADA (실습선 한바다호의 계류력 추정연구)

  • Seo, Dae-Won;Oh, Jungkeun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.5
    • /
    • pp.819-826
    • /
    • 2022
  • Recently, interest in smart port systems for linking with autonomous ships is increasing. To build a smart port system, primarily, a system that can automatically moor a vessel is required. To calculate the allowable mooring capacity of the automatic mooring system in a port, the characteristics of the vessel must be considered, and the external force generated from environmental disturbances in the sea must be accurately calculated. Accurately estimating the magnitude of these environmental disturbances is an extremely important factor for designing an automatic mooring system. In this study, the mooring capacity of the HANBADA was estimated according to the port and fishing port design criteria of the Ministry of Ocean and Fisheries. The longitudinal and lateral forces of the mooring force acting on the HANBADA were 18 kN and 248 kN, respectively, under the most extreme ocean conditions (BF 6).

A Study on the Development of Multi-Purpose Measurement System for the Evaluation of Ship Dynamic Motion (선체운동 평가를 위한 다목적 계측시스템 개발에 관한 연구)

  • Kim Chol-Seong;Lee Yun-Sok;Kong Gil-Young;Jung Chang-Hyun;Kim Dae-Hae;Cho Ik-Soon
    • Journal of Navigation and Port Research
    • /
    • v.29 no.10 s.106
    • /
    • pp.847-852
    • /
    • 2005
  • In order to evaluate the safety of navigation at sea and the safety of mooring on berthing, it is necessary that the wave and wind induced ship dynamic motion should be measured in real time domain for the validity of theoretical evaluation method such as sea-keeping performance and safety of mooring. In this paper, the basic design of sensors is discussed and some system configurations were shown. The developed system mainly consists of 4 kinds of sensors such as three-dimensional accelerator, two-dimensional tilt sensor, azimuth sensor and two displacement sensors. Using this measuring system, it can be obtained the 6 degrees of freedom of ship dynamic motions at sea and on berthing such as rolling, pitching, yawing, swaying, heaving, surging under the certain external forces.