• Title/Summary/Keyword: 계단응답

Search Result 86, Processing Time 0.023 seconds

Measurement of a Six-degree-of-freedom Dynamic Characteristics using Angle Sensor-Implemented Grating Interferometry (회절격자 간섭계를 이용한 초정밀 스테이지의 6 자유도 운동 특성 측정)

  • Lee, Cha-Bum;Kim, Gyu-Ha;Lee, Sun-Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.8
    • /
    • pp.906-912
    • /
    • 2012
  • This paper presents the new method for a six-degree-of-freedom (DOF) motion measurement and those dynamic characterizations in an ultraprecision linear stage using angle sensor-implemented grating interferometry. It consists of a diffractive optical element, a corner cube, four separate two-dimensional position sensitive detectors, four photodiodes and auxiliary optics components. From the previous study, it was confirmed that the proposed optical system could measure a six-DOF motion error in a linear stage. In this article, six-DOF motion dynamic characteristics of the stage were investigated through the step response and with respect to the conditions with a different speed of a slide table. As a result, the natural frequency and damping ratio according to a six-DOF direction was obtained. Also, it was seen that the speed of slide table had an significant effect on a six-DOF displacement motion, especially, X, which was considered as the effect of friction mechanism and local elastic mechanical deformation in a slide guide.

Dynamic Modeling Scheme for Control of the Ramjet Propulsion Systems(I) (램제트 추진 시스템의 동적 제어 모델링 기법(I))

  • Kim, Sun-Kyeong;Yeom, Hyo-Won;Jeon, Chang-Soo;Sung, Hong-Gye;Park, Ik-Soo;Lee, Kyu-Joon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.295-298
    • /
    • 2008
  • In this paper, prototype dynamic modeling scheme to control ramjet propulsion systems were proposed. From the physical understandings of engine system, a typical 2nd-order system model was applied to simulate the dynamic characteristics of fuel supply system. The shock location varience in diffuser to chamber pressure fluctuation is calculated so that the out of phase between two signals was observed.

  • PDF

Design of the Zero Location for Minimizing the Peak Overshoot of Second-Order Discrete Systems (이차 이산 시스템의 Peak Overshoot을 최소화하기 위한 영점의 위치 설계)

  • Lee, Jae-Seok;Chung Tae-Sang
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.11
    • /
    • pp.483-493
    • /
    • 2002
  • The damping ratio ${\xi}$ of the unit-step response of a second-order discrete system is a function of only the location of the closed-loop poles and is not directly related to the location of the system zero. However, the peak overshoot of the response is the function of both the damping ratio ${\xi}$ and an angle ${\alpha}$, which is the phasor angle of the damped sinusoidal response and is determined by the relative location of the zero with respect to the closed-loop poles. Therefore, if the zero and the open-loop poles are relatively adjusted, through pole-zero cancellation, to maintain the desired (or designed) closed-loop poles, the damping ratio ${\xi}$ will also be maintained, while the angle ${\alpha}$ changes. Accordingly, when the closed-loop system poles are fixed, the peak overshoot is considered as a function of the angle ${\alpha}$ or the system zero location. In this paper the effects of the relative location of the zero on the system performance of a second-order discrete system is studied, and a design method of digital compensator which achieves a minimum peak overshoot while maintaining the desired system mode and the damping ratio of the unit step response is presented.

A Study of Mixed Refrigerant Process Control in Liquefied Natural Gas Process using Dynamic Simulation (동적 모사를 이용한 천연가스 액화 공정에서 혼합냉매 공정 제어 연구)

  • Lee, Jae Yong;Park, Chan-Cook
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.6
    • /
    • pp.99-104
    • /
    • 2015
  • Today the most efficient way to transport the natural gas is carried via the liquid. In order to liquefy the natural gas to be cooled to $-160^{\circ}C$ or less. Cooling method has a number of different ways. In this paper, we studied control method for the representative liquefaction process, C3MR. Natural gas liquefaction control is a tool that can maintain the quality of natural gas is a means to ensure stable operation. Analyzing the C3MR process, and select the control parameters for the control valve. We find control structure for mixed refrigerant cycle through the step response. A control result obtained through the dynamic simulation arbitrarily given a disturbance was found to maintain a steady-state results.

PSO-Based PID Controller for AVR Systems Concerned with Design Specification (설계사양을 고려한 AVR 시스템의 PSO 기반 PID 제어기)

  • Lee, Yun-Hyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.330-338
    • /
    • 2018
  • The proportional-integral-derivative(PID) controller has been widely used in the industry because of its robust performance and simple structure in a wide range of operating conditions. However, the AVR(Automatic Voltage Regulator) as a control system is not robust to variations of the power system parameters. Therefore, it is necessary to use PID controller to increase the stability and performance of the AVR system. In this paper, a novel design method for determining the optimal PID controller parameters of an AVR system using the particle swarm optimization(PSO) algorithm is presented. The proposed approach has superior features, including easy implementation, stable convergence characteristic and good computational efficiency. In order to assist estimating the performance of the proposed PSO-PID controller, a new performance criterion function is also defined. This evaluation function is intended to reflect when the maximum percentage overshoot, the settling time are given as design specifications. The ITAE evaluation function should impose a penalty if the design specifications are violated, so that the PSO algorithm satisfies the specifications when searching for the PID controller parameter. Finally, through the computer simulations, the proposed PSO-PID controller not only satisfies the given design specifications for the terminal voltage step response, but also shows better control performance than other similar recent studies.

Relationship between Transverse-Mode Behavior and Dynamic Characteristics in Multi-Mode VCSELs (다중모드 VCSEL의 모드 특성과 동특성 사이의 관계)

  • Kim Bong-Seok;Kim Sang-Bae
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.12
    • /
    • pp.19-26
    • /
    • 2005
  • We have studied the relationship between static mode behavior and dynamic characteristics of multiple transverse-mode VCSELs by measuring the modal L-I and I-V characteristics. Dependence of the resonance frequencies of RIN (relative intensity noise) spectra on the injection current can be understood by modal L-I characteristics and mode-coupling effects. Each transverse mode behaves as an independent diode laser with the different threshold current in large active-area VCSELs, and the multiple-step turn-on is observed when step-current input is applied. This multiple-step turn-on is a result of different turn-on delay times of the transverse modes. Since the multiple-step turn-on increases the rise-time significantly, the wide active-area VCSELs are not suitable for high-speed optical transmitters unless the input current is adjusted for single transverse-mode operation.

Earthquake Simulation Tests on a 1:5 Scale 10-Story R.C. Residential Building Model (1:5 축소 10층 내력벽식 R.C. 공동주택의 지진모의실험)

  • Lee, Han-Seon;Hwang, Seong-Jun;Lee, Kyung-Bo;Kang, Chang-Bum;Lee, Sang-Ho;Oh, Sang-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.6
    • /
    • pp.67-80
    • /
    • 2011
  • This paper presents the results of shaking table tests on a 1:5 scale 10-story R.C. wall-type residential building model. The following conclusions are drawn based on the test results. (1) The model responded linear elastically under the excitations simulating an earthquake with a return period of 50 years, and showed a nonlinear response under the excitations simulating the design earthquake of Korea. (2) The model showed a significant strength drop under the maximum considered earthquake, with a return period of 2400 years. (3) The major portion of the resistance to lateral inertia forces came from the walls used for the elevator and stair case. (4) Finally, the damage and failure modes appear to be due to the flexural behavior of walls and slabs. A significant deterioration of stiffness and an elongation of the fundamental periods were observed under increased earthquake excitations.

A Digital Auto-Focusing Algorithm Using Point spread function Estimation Image Restoration (초점불완전 열화추정 및 영상복원기법을 사용한 자동초점시스템)

  • Kim, Sang-Ku;Park, Sang-Rae;Paik, Joon-Ki
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.2
    • /
    • pp.57-62
    • /
    • 1999
  • Estimation of the point spread function (PSF) is one of the main research topic of image processing, because it determines the performance of the auto-focusing system. In this paper, a new algorithm for PSF estimation is proposed, and its application to image restoration is also presented. The procedure for complete realization of the auto-focusing system consists of two steps: PSF estimation based on edge classification, and image restoration using the estimated PSF. More specifically, we divide imput image into multiple small image or block, estimate unit step response and average them on the blocks which contain edge, and estimate 2-dimensional isotropic PSF from the 1 dimensional step response. Finally we obtain in-focused image by using image restoration based on the estimated PSF.

  • PDF

Optimal Design of Thick Composite Wing Structure using Laminate Sequence Database (적층 시퀀스 데이터베이스를 이용한 복합재 날개 구조물의 최적화 설계)

  • Jang, Jun Hwan;Ahn, Sang Ho
    • Composites Research
    • /
    • v.30 no.1
    • /
    • pp.52-58
    • /
    • 2017
  • This paper presents the optimum design methodology for composite wing structure which automatically calculates the safety margin using optimization framework integrating failure modes. Particularly, its framework is possible to optimize sizing procedure to prevent failure mode which has the greatest effect on reducing the sizing time of composite structure. The main failure mode was set as the first ply failure, buckling failure mode, and bolted joint stress field, and the margin was calculated to minimize the weight. The design variable is a laminate sequence database and the responses are strain, buckling, bolted joint stress field. The objective function is the mass of the wing structure. The results of buckling analysis were compared using the finite element model to verify the robustness and reliability of Composite Optimizer.

A Study on the Pole-Q Reduction of Chebyshev Function Using Trade-off (트레이드 오프를 이용한 Chebyshev 함수의 극점-Q 감소에 관한 연구)

  • 윤창훈;최석우
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.5
    • /
    • pp.79-83
    • /
    • 2000
  • When passband ripple α/sub p/ and stopband attenuation α/sub s/ at the w/sub s/ where the stopband begins are specified in filter design, △α/sub s/ usually exceeds the specification by △α/sub s/ due to the necessity that the order n of the filter function be an integer. In this paper, we apply a trade-off method to remove the excess stopband attenuation △α/sub s/ for reducing the value of pole-Q and improving the characteristics of the Chebyshev filter function. We also apply the trade-off method of pole-Q reduction to the modified Chebyshev function, and then the 4 types of function have been analyzed to compare in frequency and time domain characteristics. The trade-off method reduces the pole-Q which influences the filter characteristics to maximum 49.6% without increase of the order n. Thus implies that they have the improved characteristics such as the reduced passband ripple and flatter delay characteristics as compared Chebyshev filter function before trade-off. And the unit step response shows shorter delay time and settling time in time domain performance.

  • PDF