• Title/Summary/Keyword: 경화거동

Search Result 482, Processing Time 0.029 seconds

Simulating Nuetron Irradiation Effect on Cyclic Deformation and Failure Behaviors using Cold-worked TP304 Stainless Steel Base and Weld Metals (냉간가공된 TP304 스테인리스강 모재와 용접재를 이용한 반복 변형 및 손상 거동에 미치는 중성자조사 영향 모사)

  • Kim, Sang Eun;Kim, Jin Weon
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.16 no.2
    • /
    • pp.58-67
    • /
    • 2020
  • This study presents cyclic stress-strain and tensile test results at room temperature (RT) and 316℃ using cold-worked TP304 stainless steel base and weld metals. By comparing the cyclic hardening/softening behavior and failure cycle of cold-worked materials with those of irradiated austenitic stainless steels, the feasibility of simulating the irradiation effect on cyclic deformation and failure behaviors of TP304 stainless steel base and weld metals was investigated. It was found that, in the absence of strain-induced martensite trasformation, cold-working could properly simulate the change in cyclic hardening/softening behavior of TP304 stainless steel base and weld metals due to neutron irradiation. It was also recognized that cold-working could adequately simulate the reduction in failure cycles of TP304 stainless steel base and weld metals due to neutron irradition in the low-cycle fatigue region.

Properties of Cement Composite Using Selvedge of High Performance Fabric (고성능 원단의 셀비지를 활용한 시멘트 복합재료의 특성)

  • Choi, Jeong-Il;Park, Se-Eon;Kim, Yun Yong;Kim, YoungMin;Lee, Bang Yeon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.2
    • /
    • pp.152-158
    • /
    • 2022
  • The purpose of this study is to investigate experimentally the compressive strength and tensile behavior of cement composites reinforced by selvedge short fiber from high performance fabric. Four types of mixtures according to the types of selvedge short fibers were prepared and compressive strength and tension tests were performed. Test results showed that the compressive strength values of composites investigated in this study ranged from 64 MPa to 66 MPa and all composites showed strain-hardening behavior. The tensile strain capacity values of composites ranged from 2.6 % to 2.8 % and multiple cracking behavior was observed in all composites.

Effects of Carbon Black on Mechanical Properties and Curing Behavior of Liquid Silicone Rubber (LSR) (Carbon Black 첨가에 따른 액상 실리콘 고무(LSR)의 기계적 특성 및 경화 거동 분석)

  • Beom-Joo Lee;Seon-Ju Kim;Hyeong-Min Yoo
    • Design & Manufacturing
    • /
    • v.17 no.2
    • /
    • pp.27-32
    • /
    • 2023
  • Liquid silicon rubber (LSR) has fine thermal compatibility and is widely used in various fields such as medical care and automobiles because it is easy to implement products with good fluidity. With the recent development of flexible sensors, the focus has been on manufacturing conductive elastomers, such as silicone as elastic materials, and carbon black, CNT, and graphene are mainly used as nanomaterials that impart conductive phases. In this study, mechanical behavior and curing behavior were measured and analyzed to manufacture a CB-LSR complex by adding Carbon Black to LSR and to identify properties. As a result of the compression test, the elastic modulus tended to increase as carbon black was added. When the swelling test and the compression set test were conducted, the swelling rate tended to decrease as the content of carbon black increased, and the compression set tended to increase. In addition, DSC measurements showed that the total amount of reaction heat increased slightly as the carbon black content increased. It is considered that carbon black was involved in the crosslinking of LSR to increase the crosslinking density and have a positive effect on oil resistance reinforcement.

Determination of Combined Hardening Model Parameters to Simulate the Inelastic Behavior of High-Strength Steels (고강도 강재의 비탄성 거동을 모사하기 위한 복합경화모델 파라미터 결정)

  • Cho, EunSeon;Cho, Jin Woo;Han, Sang Whan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.6
    • /
    • pp.275-281
    • /
    • 2023
  • The demand for high-strength steel is rising due to its economic efficiency. Low-cycle fatigue (LCF) tests have been conducted to investigate the nonlinear behaviors of high-strength steel. Accurate material models must be used to obtain reliable results on seismic performance evaluation using numerical analyses. This study uses the combined hardening model to simulate the LCF behavior of high-strength steel. However, it is challenging and complex to determine material model parameters for specific high-strength steel because a highly nonlinear equation is used in the model, and several parameters need to be resolved. This study used the particle swarm algorithm (PSO) to determine the model parameters based on the LCF test data of HSA 650 steel. It is shown that the model with parameter values selected from the PSO accurately simulates the measured LCF curves.

Determination of Degree of Hydration, Temperature and Moisture Distributions in Early-age Concrete (초기재령 콘크리트의 수화도와 온도 및 습도분포 해석)

  • 차수원;오병환;이형준
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.813-822
    • /
    • 2002
  • The purpose of the present study is first to refine the mathematical material models for moisture and temperature distributions in early-age concrete and then to incorporate those models into finite element procedure. The three dimensional finite element program developed in the present study can determine the degree of hydration, temperature and moisture distribution in hardening concrete. It is assumed that temperature and humidity fields are fully uncoupled and only the degree of hydration is coupled with two state variables. Mathematical formulation of degree of hydration Is based on the combination of three rate functions of reaction. The effect of moisture condition as well as temperature on the rate of reaction is considered in the degree of hydration model. In moisture transfer, diffusion coefficient is strongly dependent on the moisture content in pore system. Many existing models describe this phenomenon according to the composition of mixture, especially water to cement ratio, but do not consider the age dependency. Microstructure is changing with the hydration and thus transport coefficients at early ages are significantly higher because the pore structure in the cement matrix is more open. The moisture capacity and sink are derived from age-dependent desorption isotherm. Prediction of a moisture sink due to the hydration process, i.e. self-desiccation, is related to autogenous shrinkage, which may cause early-age cracking in high strength and high performance concrete. The realistic models and finite element program developed in this study provide fairly good results on the temperature and moisture distribution for early-age concrete and correlate very well with actual test data.

A Study on the Structural Behavior of the Composite Slab with New-Shaped Deckplate (신형상 데크플레이트를 이용한 합성슬라브의 구조적인 거동에 대한 연구)

  • Huh, Choong;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.3 s.32
    • /
    • pp.341-350
    • /
    • 1997
  • The objective of this study is to investigate the structural behavior of the composite slabs with the new metal deckplate. The new deckplate can be used as structural member with topping concrete. So several experiments of this structural test and the fire resistance test were done. From this experiments. slabs with new metal deckpklate were verified as composite slabs. In this paper, this verifications were compared with the international design methods. For experiment. 49 specimens were made. the main parameters are deckplate thickness (1.2mm. 1.6mm) depth of topping concrete(85mm. 90mm). support condition(simple, 2-span), shear reinforcment(studs), span(2.7m, 3.0m, 3.3m. 3.6m. 3.9m) and shear span(L/3, L/4, L/7). We analyzed the structural behavior of composite slab throughout the moment-curvature relationship which is obtained with the program using the computer language. Turbo C. From this development for slab system, the reinforced concrete or steel structure building may be easy, economical for construction, And informations about the structural behavior of composite slabs will be utilized to established korea standard.

  • PDF

CFD analysis for effects of the crucible geometry on melt convection and growth behavior during sapphire single crystal growth by Kyropoulos process (사파이어 단결정의 Kyropoulos 성장시 도가니 형상에 따른 유동장 및 결정성장 거동의 CFD 해석)

  • Ryu, J.H.;Lee, W.J.;Lee, Y.C.;Jo, H.H.;Park, Y.H.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.3
    • /
    • pp.115-121
    • /
    • 2012
  • Sapphire single crystals have been highlighted for epitaxial gallium nitride films in high-power laser and light emitting diode (LED) industries. Among the many crystal growth methods, the Kyropoulos process is an excellent commercial method for growing larger, high-optical-quality sapphire crystals with fewer defects. Because the properties and growth behavior of sapphire crystals are influenced largely by the temperature distribution and convection of molten sapphire during the manufacturing process, accurate predictions of the thermal fields and melt flow behavior are essential to design and optimize the Kyropoulos crystal growth process. In this study, computational fluid dynamic simulations were performed to examine the effects of the crucible geometry aspect ratio on melt convection during Kyropoulos sapphire crystal growth. The results through the evolution of various growth parameters on the temperature and velocity fields and convexity of the crystallization interface based on finite volume element simulations show that lower aspect ratio of the crucible geometry can be helpful for the quality of sapphire single crystal.

Synthesis and Anaiysis of Photohnninescence Properties of $^5D_1$$^7F_1$ Transition in $LaGaO_3$:$Eu^{3+}$ Red Phosphor ($LaGaO_3$:$Eu^{3+}$형광체의 합성 및 발광 특성)

  • Kim, Kyoung Hwa;Choi, Yoon Young;Sohn, Kee Sun;Kim, Chang Hae;Park, Hee Dong;Choe, Se Young
    • Journal of the Korean Chemical Society
    • /
    • v.44 no.5
    • /
    • pp.453-459
    • /
    • 2000
  • FED has deserved an intensive attentioD as a new flat panel display. The present investigationaims at undemtanding the photoluminescence and cathodoluminescent properties of hGaO$_3$: $Eu^{3+}$ phosphor bytaking into account the possibility that this phosphor could be applied for FED. In onler to investigate on.sucha detailed behavior; 8everM experimental skil18 Je conducted to the LaGaO$_3$:$Eu^{3+}$ phosphoL The excimtion srectrum artd emission spectmn were rnezsured in the UV range and then decay curve of $^5D_0$+$^7F_j$transitions\vas examined. The decay behavior of $^5D_0$ emission was anMyzed by a newly Iuoposed cross-relaxation mech-ani8In in asswiation with inteFwnter di1ffision (or migration). The cross-mlaxation from $^5D_0$ to CTB (Cha'geTransfer Band) wuld be a quite retsonable by considering the excitation spectrum. It could be also found thatthe quenching type was changed from ditfrsion controlled process to the direct quenching process -s inJeasing $Eu^{3+}$ oncntration.

  • PDF

Polymerization Shrinkage Behavior Measured by Digital Image Correlation for Methacrylate-based and Silorane-based Composites During Dental Restoration (디지털 이미지 상관법을 이용한 Methacrylate기질과 Silorane기질 복합레진의 치아 수복 시 중합수축거동)

  • Park, Jung-Hoon;Choi, Nak-Sam
    • Composites Research
    • /
    • v.33 no.3
    • /
    • pp.125-132
    • /
    • 2020
  • The polymerization shrinkage behavior of dimethacrylate-based composite (Clearfil AP-X, Kuraray) and silorane-based composite (Filtek P90, 3M ESPE) used for dental composite restorations was measured using digital image correlation method. The stress distribution on the surface of specimen was calculated by finite element analysis with equivalent elastic modulus and was compared with the measured shrinkage distribution. Camera images were monitored by a CCD camera during and after the irradiation of light. As a result of the DIC analysis, a non-uniform shrinkage distribution was observed in both composite resins, and the resin core inside the ring specimen had free flowability, leading to in greater shrinkage strain than the resin/ring interfacial region. It was observed that as the distance from the center of the resin increased, the radial average shrinkage strain decreased. The radial average shrinkage strain during light irradiation occurred to be 33% for P90 and 57% for AP-X of the entire strain at the end of the test. The shrinkage behavior of P90 and AP-X was measured to be significantly different from each other during light irradiation. In the resin near the resin/ring interface, it was confirmed that the tensile strain rapidly formed to increase after light irradiation, causing a tensile stressed, interface weak.

Study on the Non-isothermal Crystallization Kinetics of Branched Polypropylene (분지형 폴리프로필렌의 비등온결정화 거동 연구)

  • Yoon, Kyung-Hwa;Shin, Dong-Yup;Kim, Youn-Cheol
    • Polymer(Korea)
    • /
    • v.36 no.2
    • /
    • pp.245-250
    • /
    • 2012
  • Branched polypropylenes (PP) with long chain branch were prepared by solid state reaction with three different branching agent of 0.3 wt% content. The chemical structures, non-isothermal crystallization behavior and complex viscosity of the branched PP were investigated by FTIR, DSC, optical microscope, and dynamic rheological measurement. The chemical structure of the branched PP was confirmed by the existence of =C-H stretching peak of the branching agent at 3100 $cm^{-1}$. There was no distinct change in melting temperature in case of PP-D-0-3 and PP-F-0-3, but PP-H-0-3 indicated a decrease in melting temperature. The decrease in melting temperature was interpreted by the fact that the degradation reaction of PP was more dominant than branched reaction, and confirmed by a decrease in complex viscosity. The non-isothermal crystallization behavior of the branched PP was analyzed using by Avrami equation. The Avrami exponent of PP was 3, and the values of the branched PP with DVB and FS were below 3. The activation energy of PP calculated by Kissinger method was 25 kJ/mol, and there were no big difference in activation energies of the branched PPs compared to PP.