• 제목/요약/키워드: 경험적모드분해법

검색결과 3건 처리시간 0.015초

결측치가 있는 자료에서의 변동모드분해법 (Variational Mode Decomposition with Missing Data)

  • 최규빈;오희석;이영조;김동호;유경상
    • 응용통계연구
    • /
    • 제28권2호
    • /
    • pp.159-174
    • /
    • 2015
  • 최근에 Dragomiretskiy와 Zosso (2014)는 경험적모드분해의 단점을 보완하여 새로운 신호 분해방법인 변동모드분해법(Variational Mode Decomposition)을 고안하였다. 기본적으로 변동모드분해법은 경험적모드분해법에 비하여 주파수 탐색 및 분리(tone detection and tone separation)에 탁월한 성능을 보인다. 또한 고속퓨리에변환을 기반으로 한 알고리즘을 사용하여 경험적모드분해법보다 잡음에 강건하다는 장점이 있다. 하지만 변동모드분해법은 결측 등으로 신호가 동일한 시간간격 혹은 공간적 간격으로 측정되지 않은 경우 제대로 동작하지 않는 단점이 있다. 이를 보완하기 위해서 본 논문에서는 변동모드분해법에 다단계우도함수를 조합하는 새로운 방법을 제안한다. 여기에서 다단계우도함수는 변동모드분해법이 신호를 적절한 내재모드함수로 분해하기 전에 결측치를 대체하는 효율적인 방법을 제시한다. 모의실험과 실제 자료의 사례연구를 통하여 변동모드분해법이 기존의 방법보다 더 효율적으로 신호를 분해한다는 것을 보일 것이다.

순환성분 추출을 위한 EMD와 HP 필터의 비교분석: 한국의 거시 경제 지표에의 응용 (Comparison of EMD and HP Filter for Cycle Extraction with Korean Macroeconomic Indices)

  • 박민정;성병찬
    • 응용통계연구
    • /
    • 제27권3호
    • /
    • pp.431-444
    • /
    • 2014
  • 본 논문에서는 시간-진동수 영역에서 시계열을 여러 구성 성분으로 분해하는 방법인 경험적모드분해법(Empirical Mode Decomposition)을 소개하고, 이를 이용하여 한국의 주요 거시 경제 지표를 대상으로 순환변동과 추세 성분을 추출하고 예측에 활용한다. 그 효율성을 살펴보기 위하여, 추출된 구성 성분들의 변동성, 동행성, 지속성, 인과성, 비정상성 및 예측력을 계산하고, 가장 보편적으로 널리 사용되고 있는 Hodrick-Prescott 필터에 의한 결과와 비교한다.

코스피 예측을 위한 EMD를 이용한 혼합 모형 (EMD based hybrid models to forecast the KOSPI)

  • 김효원;성병찬
    • 응용통계연구
    • /
    • 제29권3호
    • /
    • pp.525-537
    • /
    • 2016
  • 본 연구에서는 시계열 자료의 비정상성과 비선형성과 같은 복잡성을 효과적으로 포용할 수 있는 경험적모드분해법(empirical mode decomposition; EMD)을 토대로 시계열 자료의 분석 및 예측을 위한 혼합(hybrid) 모형을 연구한다. EMD에 의하여 생성되는 내재모드함수(intrinsic mode function; IMF)는 해석 및 예측의 편리성을 개선하기 위하여 누적에너지의 개념을 사용하여 그룹화하였으며, 그룹화된 IMF 및 residue의 성분들은 그 성질에 따라서 ARIMA 모형 및 지수평활법과 결합된 혼합 모형으로 예측된다. 제안된 방법은 일별 코스피 지수의 예측을 위해서 적용하였다. 다양한 형태의 혼합 모형을 사용하여 코스피 지수를 예측하였으며 전통적인 예측 방법과 비교하였다. 분석 결과, 그룹화된 성분들은 코스피 지수의 움직임을 단기적, 중기적, 장기적으로 해석하는데 편리함을 주었으며, 그룹화된 IMF 및 residue를 각각 ARIMA 모형과 지수평활법으로 조합한 혼합 모형이 우수한 예측력을 보여주었다.