• Title/Summary/Keyword: 경피흡수

Search Result 82, Processing Time 0.018 seconds

Development of Porous Cellulose Hydrogel for Enhanced Transdermal Delivery of Liquiritin and Liquiritigenin as Licorice Flavonoids (감초 플라보노이드 Liquiritin 및 Liquiritigenin을 담지한 피부전달체인 셀룰로오스 다공성 하이드로젤 제형 개발)

  • Kim, Su Ji;Kwon, Soon Sik;Yu, Eun Ryeong;Park, Soo Nam
    • Polymer(Korea)
    • /
    • v.38 no.5
    • /
    • pp.676-681
    • /
    • 2014
  • Licorice, widely used as a herbal medicine, has flavonoids such as liquiritin and its aglycone, liquiritigenin that show anti-oxidant and anti-inflammatory properties. Licorice flavonoid-loaded cellulose hydrogels were prepared as carriers for skin drug delivery, and their properties were investigated. The porous cellulose hydrogel was made by reacting cellulose with epichlorohydrin as a cross-linking agent in NaOH/urea(1~10%) solutions. Through studies on the rheological properties and water uptake of the hydrogel, a NaOH/urea(6%) solution was established as being optimum for the synthesis of the cellulose hydrogel containing liquiritin and liquiritigenin. Scanning electron microscopy (SEM) observations of a cross-section of the prepared hydrogel indicated its porosity. In particular, in skin permeation experiments using a Franz diffusion cell, hydrogel containing the licorice flavonoids showed remarkable transdermal permeation compared to the control group. These results indicate that porous cellulose hydrogel is a potential drug delivery system to enhance the skin permeation of licorice flavonoids.

Cutaneous hydration effect of collagen hydrolysate containing collagen tripeptides (콜라겐 트리펩타이드를 고함량으로 함유하는 콜라겐 가수분해물의 피부 보습 효과)

  • Kim, Ae-Hyang;Kim, Yi-Soo;Piao, Zhe;Shin, Yong Chul;Ha, Min Woo
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.4
    • /
    • pp.420-429
    • /
    • 2018
  • Skin ageing is associated with compromised performance of its fundamental barrier functions, with undesirable changes in appearance. Since this may introduce a detrimental impact on the quality of life, significant effort to discover effective ingredients against ageing is being invested. Recently, collagen hydrolysates containing tripeptides such as GlyPro-Hyp (GPH) have been developed with anticipation of improved effects compared to that of existing collagen hydrolysate-products. To evaluate the cutaneous hydration effect of collagen tripeptides (CTP), meaningful biomarkers in human dermal fibroblasts (HDF) and NC/Nga Tnd mice were analyzed in this study. Increased levels of ceramide kinase, hyaluronic acid, collagen 1A, and hyaluronan synthase-2 (HAS2), and decreased levels of hyaluronidase-1 (HYAL1) and CD44 in HDF cells were demonstrated. Furthermore, significant reduction of transepidermal water loss (TEWL), scratching behavior, HYAL1, $TNF-{\alpha}$ and IL-6 and increased water content and HAS2 were verified by in vivo tests. These results strongly suggest the potential of CTP as a skin hydration agent.