• Title/Summary/Keyword: 경질우레탄폼

Search Result 7, Processing Time 0.023 seconds

Open-Cell Rigid Polyurethane Foam Using Reactive Cell Opening Agents (반응성 기포개방제를 이용한 개방기포형 경질우레탄폼)

  • Ahn, WonSool
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.5
    • /
    • pp.2524-2528
    • /
    • 2013
  • Cell opening characteristics dependent on the cell openers for the conventional formulation of a closed-cell polyurethane foam (PUF) was studied using 1-butanol and lithium salt of 12-hydroxystearic acid (Li-12HSA) as the reactive cell opening agents. While cell openining content of only 10.5 % was obtained for the sample with 4 phr of 1-butanol as the single reactive cell opener, that of 98.0% could be obtained for the sample with 2 phr of Li-12HSA as the reactive co-cell opener. As the results, it showed that a fully open-cell rigid PUF could be obtained by introducing a novel reactive cell opener, having a functional group able to form a bulky side-chain on the urethane networks, without severe loss of mechanical properties of the closed-cell PUF like cell size, bulk density, and thermal conductivity.

A Study on Ignitability and Heat Release Rate Characteristics of Rigid Polyurethane Foam (경질 폴리우레탄폼의 착화성 및 열방출특성 연구)

  • 공영건;이두형
    • Fire Science and Engineering
    • /
    • v.17 no.4
    • /
    • pp.117-123
    • /
    • 2003
  • In this study; the ignition and heat release rate characteristics of rigid polyurethane foam were investigated in accordance with setchkin ignition tester and cone calorimeter which is using oxygen consumption principle. In the ignition temperature study; flash-ignition temperature was $383^{\circ}C$-$390^{\circ}C$, self-ignition temperature was$ 493^{\circ}C$∼495$^{\circ}C$. The self-ignition temperature of rigid polyurethane foam was about $100^{\circ}C$ higher than the flash-ignition temperature. In the cone calorimeter study, the time to ignition of rigid polyurethane foam was faster as the external heat flux increase. In the same heat flux level, the time to ignition was faster as the density of rigid polyurethane foam decrease. Also the heat release rate was the largest value at the heat flux of /$50 ㎾\m^2$ and had a tendency of increase as the heat flux level and density increase. In the standpoint of time to ignition and heat release rate, the fire performance of rigid polyurethane foam was influenced by the applied heat flux level and density and the flashover propensity classified by Petrella's proposal was high.

Establishment of Design Standard and Analysis of Insulation Property for Underground Space in Architecture (건축물의 지하공간을 위한 단열재의 특성 분석 및 설계 기준 수립)

  • Hwang, Min-Kyu;Cho, Woo-Jin;Kim, Kang-Soo
    • KIEAE Journal
    • /
    • v.13 no.2
    • /
    • pp.107-112
    • /
    • 2013
  • The purpose of this study is to analyze an insulation property and to establish a design standard for the underground space in architecture. Insulation materials for this study are 12 kinds of Insulation which qualified KS standards(3 classes of EPS type 1, 3 classes of EPS type 2(Neopor), 3 classes of XPS and 3 classes of PU Boards). For insulation materials of underground space, insulating and water tightening property are desired. So conductivity for insulating and water absorption for water tightening are measured in this study. Temperature, insulation is exposed to in the underground space, is different from temperature above the ground. Conductivity is measured in a temperature of $17^{\circ}C$, $20^{\circ}C$, $23^{\circ}C$ and $26^{\circ}C$. In KS standards, water absorption are measure after 24 hours, but insulation is exposed to water for a long time in the underground. So after 110 days, water absorption are measured. As time goes by, increasing of water absorption means decreasing of water tightening and insulating. So after water absorption had measured for 110 days, conductivity has measured again. As a result, XPS is selected as optimized insulation for underground. And Conductivity of XPS insulation with water should be added by 20%.

The Development of Damping Material for Standard Floating Floor Type-5 Using Ethylene Vinyl Acetate co-polymer(EVA) & Urethane Form (EVA와 경질우레탄폼을 이용한 표준바닥구조 벽식-5용 단열완충재 개발)

  • Park, Cheol-Yong;Kim, Sang-Hoon;Jang, Dong-Woon;Jang, Cheol-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.461-464
    • /
    • 2004
  • The reduction effect of floor impact noise depends on the various factors such as stiffness and thickness of the concrete slab, finishing If ceiling materials and the composition method. Among the rest it is well known that floating floor system is more effective. Standard floating floor(SFF) type-2 consisted of 50mm lightweight aerated concrete(LAC) and 20mm damping material has been widely used. But LAC construction problem on dry damping material occurred and the reduction effect of floor impact noise has bare minimum qualifications. Thus the aim of this study is to develop 40mm composite damping material(Soundzero Plus) for SFF type-5 which substitute LAC and damping material. 'Soundzero Plus' is satisfied with quality requirement for damping material for SFF. The heat transition rate, $0.45W/m^2{\cdot}K$ is more effective 55% about than the regulation. The test results of floor impact noise by using 'Soundzero Plus' are showed good improvement about 12dB (tested by tapping machine) and 4dB (tested by bang machine) between before and after.

  • PDF

A Study on Combustion Gases Toxicity Evaluation of Polymeric Material (고분자재료의 연소가스 독성평가에 관한 연구)

  • 박영근
    • Fire Science and Engineering
    • /
    • v.15 no.3
    • /
    • pp.7-13
    • /
    • 2001
  • In this paper, we had analyzed comsbustion gases according to pyrolysis $600^{\circ}c$, $800^{\circ}c$ and $1000^{\circ}c$ for polymeric material using a GASTEC colorimetric gas detector tube in order to combustion gases toxicity evaluation for flame retardant untreated ply wood, flame retardant treated ply wood, flexible polyvinyl chloride and flexible polyurethane foam of polymeric material. As a result, comsbustion gases producted from small specimens of polymeric material had reached fatal to man at a 30 minute exposure time that had possesed toxicity index. Toxicity index at pyrolysis $800^{\circ}c$ of flexible polyvinyl chloride was 31.74. Flexible polyvinyl chloride was the highest toxicity index of flame retardant untreated ply wood, flame retardant treated ply wood, flexible polyvinyl chloride and flexible polyurethane foam. The comsbustion gases producted commonly no concern with pyrolysis temperature had analyzed carbon dioxide($CO_2$) and carbon monoxide(CO). Toxicity index had investigated differently according to pyrolysis temperature even a similar materal.

  • PDF

Effects of GTR and Unexpanded Expancel Powders on Thermal Conducting Characteristics of Rigid Polyurethane Foams (GTR 및 미발포 Expancel이 경질우레탄폼의 열전도특성에 미치는 영향)

  • Ahn, Won-Sool
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.6
    • /
    • pp.2846-2851
    • /
    • 2012
  • Effects of ground tire rubber(GTR) and unexpanded $Expancel^{(R)}$ powders on the thermal conducting characteristics of rigid polyurethane foams(PUFs) were studied. Sub-micron sized GTR powders and $Expancel^{(R)}$ powders were used as the foam nucleating agents to improve the thermal insulating properties of the rigid PUFs. As the results, while the thermal conductivities of the GTR filled-PUF samples were increased linearly with GTR contents, those of $Expancel^{(R)}$ filled-PUF samples were decreased a little bit. It was considered from the results that GTR powders might predominantly play a role as the extending fillers. On the other hand, $Expancel^{(R)}$ powders could act as the foam nucleating agents based on the polar surface, showing smaller cell sized PUF with improved insulating characteristics.

Improvement of Flame-Retardant Performance of Polyurethane Foam Coated with Water Glass (물유리코팅에 따른 폴리우레탄 폼의 난연성능 개선에 대한 연구)

  • Kim, Hyeong-Jun;Park, Jewon;Na, Hyein;Lim, Hyung Mi;Chang, Gabin
    • Fire Science and Engineering
    • /
    • v.34 no.2
    • /
    • pp.7-13
    • /
    • 2020
  • In this study, water glass was applied as a coating material to a rigid polyurethane foam to improve the flame-retardant properties of the foam. The heat release rate of the cone calorimeter of the urethane foam, in which the inorganic water-glass coating layer was applied, decreased rapidly. The water glass coated on the polyurethane surface formed a glassy foam by foaming with water, which did not escape during the vitrification reaction when the foam or glass was heated. The glassy foam formed on the polyurethane foam became a fire-resistant insulation layer that inhibited the combustion of the polyurethane foam for more than 10 min. Water glass was found to improve the flame-retardant properties of the rigid polyurethane foam.