Journal of the Korean Data and Information Science Society
/
v.28
no.6
/
pp.1245-1255
/
2017
The online learning is a process of obtaining the solution for a given objective function where the data is accumulated in real time or in batch units. The stochastic gradient descent method is one of the most widely used for the online learning. This method is not only easy to implement, but also has good properties of the solution under the assumption that the generating model of data is homogeneous. However, the stochastic gradient method could severely mislead the online-learning when the homogeneity is actually violated. We assume that there are two heterogeneous generating models in the observation, and propose the a new stochastic gradient method that mitigate the problem of the heterogeneous models. We introduce a robust mini-batch optimization method using statistical tests and investigate the convergence radius of the solution in the proposed method. Moreover, the theoretical results are confirmed by the numerical simulations.
Journal of the Institute of Electronics and Information Engineers
/
v.53
no.2
/
pp.47-52
/
2016
The used digital images in the smart device and small displayer has been a downscaled image. In this paper, the detection of the downscaling image forgery is proposed using the feature vector according to the pixel value's gradients. In the proposed algorithm, AR (Autoregressive) coefficients are computed from pixel value's gradients of the image. These coefficients as the feature vectors are used in the learning of a SVM (Support Vector Machine) classification for the downscaling image forgery detector. On the performance of the proposed algorithm, it is excellent at the downscaling 90% image forgery compare to MFR (Median Filter Residual) scheme that had the same 10-Dim. feature vectors and 686-Dim. SPAM (Subtractive Pixel Adjacency Matrix) scheme. In averaging filtering ($3{\times}3$) and median filtering ($3{\times}3$) images, it has a higher detection ratio. Especially, the measured performances of all items in averaging and median filtering ($3{\times}3$), AUC (Area Under Curve) by the sensitivity and 1-specificity is approached to 1. Thus, it is confirmed that the grade evaluation of the proposed algorithm is 'Excellent (A)'.
Journal of the Institute of Electronics and Information Engineers
/
v.54
no.7
/
pp.71-78
/
2017
There are several algorithms to classify emotion, such as Support-vector-machine (SVM), Bayesian decision rule, etc. However, many researchers have insisted that these methods have minor problems. Therefore, in this paper, we propose a novel method for emotion recognition based on Electroencephalogram (EEG) signal using the Gradient method which was proposed by Han. We also utilize a database for emotion analysis using physiological signals (DEAP) to obtain objective data. And we acquire four channel brainwaves, including Fz (${\alpha}$), Fp2 (${\beta}$), F3 (${\alpha}$), F4 (${\alpha}$) which are selected in previous study. We use 4 features which are power spectral density (PSD) of the above channels. According to performance evaluation (4-fold cross validation), we could get 85% accuracy in valence axis and 87.5% in arousal. It is 5-7% higher than existing method's.
Proceedings of the Korean Society of Precision Engineering Conference
/
1996.11a
/
pp.683-689
/
1996
5축 가공기는 가공중의 공구자세 변화를 요구하는 복잡한 산업형상의 가공, 혹은 경사 가공을 통한 표면조도 향상등의 목적으로 채용되는 첨예의 공작기계로서 이를 지원하는 CAM연구가 활발히 이루어지고 있다. 그러나, 산업현장에서 흔히 5축 가공기로 일컬어지는 상당수의 5축 가공기는 기구축은 5축을 가지나, 동기제어 축수는 3측인 “선택적 3/5축 가공기”의 형태로서 진정한 의미의 5축가공기와는 근본적으로 다르다. 5축 동기제어를 지원하는 CAM연구는 부분적으로 연구 개발된 상태이나, 선택적 3/5축을 지원하는 CAM 이론은 연구된 바 없으며, 이에 따라 현장에서는 공작물의 셋업을 변경시키는 소위 자동 인덱싱 방식으로 활용하고 있는 실정이다. 본 연구팀에서는 선택적 3/5축 가공기에서 5축 가공을 실현할 수 있는 공구경로 산출 및 제어알고리즘을 개발하고 있으며, 본 논문에서는 (5축 가공 대비) 선택적 3/5축 가공문제의 이론적 특성과 경사가공을 수행하기 위한 알고리즘을 소개하고 시뮬레이션을 통하여 유효성을 보인다.
This research introduces the method to measure cross-slope using Road Safety Survey and Analysis Vehicle(RoSSAV) with multiple sensors. Cross-slope is an important element like horizontal alignment and vertical alignment in evaluating safety of the roads. In many cases, cross-slope is different from drawings due to frequent overlays. It is extremely difficult to measure cross slope at the roads which has huge traffic volume. Therefore, the algorithm, which can be used when driving the RoSSAV with CPS/INS and Laser Scanner sensors was developed for measuring the cross-slop. Also, in order to examine the algorithm, the superelevation was measured by Laser Scanner and GPS/INS system during travelling and the result was verified by statistical verification.
Proceedings of the Korea Water Resources Association Conference
/
2006.05a
/
pp.588-593
/
2006
자연하천은 일반적으로 만곡수로나 사행수로 형태를 보이고 있으며, 직선수로에서와 달리 원심력에 기인한 이차류 영향을 받게 된다. 이차류에 의해서 수면에서는 만곡부 바깥쪽으로, 하상에서는 만곡부 안쪽으로의 흐름특성을 보이게 된다. 만곡부 안쪽으로 가해지는 하상 전단응력에 기인하여 하상에서의 입자가 만곡부 안쪽으로 이송되며, 결과적으로 만곡부 안쪽에는 점사주가, 바깥쪽에는 소(pool)가 생성된다. 또한 지형경사의 생성으로 입자에 가해지는 중력효과도 변화된다. 따라서 이와 같은 자연하천의 흐름과 하상변동을 수치모의 하기 위해서는 만곡부 이차류 특성을 고려한 모형이 필요하다. 본 연구에서는 수심 적분된 흐름방정식과 하상토 보존방정식 (Exner equation)을 이용한 하상변동을 위한 비연계 수치모형을 위해서 하상토 보존방정식의 유한요소 알고리즘을 개발하였다. 하상토 보존방정식은 흐름 특성에 따른 평형 유사량의 공간변화율을 이용하여 일정 기간 동안의 하상 변화량을 계산한다. 이 때 이차류에 의한 하상 전단응력의 편각 및 지형경사 변화에 따른 실제 입자의 이송방향을 보정하여 평형 유사량이 계산된다. 이러한 보정식을 적용시키기 위해서는 유속성분의 공간변화량 및 지형경사의 공간성분이 필요하다. 유한요소법은 연속성 변수를 이산화시켜 근사해를 구하는 수치기법의 일종이기 때문에, 요소망이 불규칙적으로 구성되었을 경우 임의의 절점에서 연속성을 지닌 변수의 공간변화율을 계산하는데 어려움이 있다. 따라서 본 연구에서는 평형 유사량 계산 시에 절점이 아닌 요소 내부에서 평형 유사량을 계산하는, 하상토 보존방정식의 새로운 유한요소 알고리즘을 개발하고, 새로운 알고리즘을 적용시킨 수치모형의 검증을 행하였다. 경계조건 알고리즘의 검증으로 위해서 Soni 등 (1980)이 행한 상류 유입 유사량에 따른 하상변동을 수치 모의하고 실험치와 비교하였으며, Sutmuller와 Glerum (1980)이 수행한 만곡수로에서의 하상변동을 모의하고 실험과 비교하였다. 새로운 알고리즘을 적용시킨 하상토 보존방정식의 유한요소 수치모형의 결과는 매우 안정적이며, 실험과 매우 유사한 결과를 얻을 수 있었다. 본 수치모델은 현재 균일한 입자의 하상토만을 고려하므로, 입자분급이나 하상 장갑화 현상 등은 무시한다.
Journal of the Institute of Electronics Engineers of Korea CI
/
v.40
no.4
/
pp.206-213
/
2003
In this paper, we propose a design method of automatic thickness measurement and defect inspection system, which measures the thickness of the autoclaved lightweight concrete block and inspects the defect on a real-time basis. The image processing system was established with a CCD camera, an image grabber, and a personal computer without using assembled measurement equipment. For the realization of proposed algorithm, the preprocessing method that can be applied to overcome uneven lighting environment, threshold decision method, unit length decision method in uneven condition with rocking objects, and the curvature calibration method of camera using a constructed grid are developed. From the experimental results, we have found that the required measurement accuracy specification is sufficiently satisfied using our proposed method.
The Journal of the Korea institute of electronic communication sciences
/
v.15
no.6
/
pp.1201-1208
/
2020
A mass of seawater with similar properties in the ocean is called a water mass, and the front is a sea area where two masses of different properties meet. The gradient algorithm is a method of extracting where the sea water temperature pixel changes rapidly assuming that the slope is large, and the place with the large slope is assumed to be a front. This method is able to process large amounts of satellite data at once. Therefore, in this study, we tried to find the front lines in the sea area around the Korean Peninsula by using a gradient algorithm. The study data used gridded sea surface temperature satellite data. The resolution was 1/4°, and the monthly average data from January 1993 to December 2018 were used. There were major five fronts representatively, China Coastal Front, South Sea Coastal Front, Kuroshio Front/ Kuroshio Extension Front, Subpolar Front and the Subarctic Front. As a result of comparing the distribution of front by season, more types of front were distributed in winter and spring than in summer and autumn, and the distribution range was wider.
Journal of the Korea Academia-Industrial cooperation Society
/
v.21
no.2
/
pp.189-194
/
2020
This paper analyzes the gradient descent method, which is the one most used for learning neural networks. Learning means updating a parameter so the loss function is at its minimum. The loss function quantifies the difference between actual and predicted values. The gradient descent method uses the slope of the loss function to update the parameter to minimize error, and is currently used in libraries that provide the best deep learning algorithms. However, these algorithms are provided in the form of a black box, making it difficult to identify the advantages and disadvantages of various gradient descent methods. This paper analyzes the characteristics of the stochastic gradient descent method, the momentum method, the AdaGrad method, and the Adadelta method, which are currently used gradient descent methods. The experimental data used a modified National Institute of Standards and Technology (MNIST) data set that is widely used to verify neural networks. The hidden layer consists of two layers: the first with 500 neurons, and the second with 300. The activation function of the output layer is the softmax function, and the rectified linear unit function is used for the remaining input and hidden layers. The loss function uses cross-entropy error.
신경회로망 기술은 다양한 공학적 및 과학적 문제에 적용되어 왔으며 복잡한 동특성을 갖는 시스템의 모델링에 특히 효율적인 것으로 알려져 있다. 신경회로망 학습은 신경회로망의 가중치 및 바이러스로서 주어지는 파라미터 벡터의 요소를 주어진 목적함수를 최소화하는 최적의 값으로 추정하는 연산과정을 의미한다. 따라서 신경회로망 파라미터 학습은 전체시스템의 성능을 직접적으로 좌우하는 매우 중요한 단계라 할 수 있으며 일반적으로 파라미터의 수정규칙 알고리즘을 도출한다. 이러한 수정규칙은 주로 최적화 기법을 적용하며 경사함수(gradient function)를 포함한다. 최근에는 이러한 경사함수를 포함하지 않는 학습 알고리즘이 많이 개발되고 있으며 특히 칼만 필터링 이론을 접목한 미분 신경회로망의 학습 알고리즘이 최근에 발표되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.