• Title/Summary/Keyword: 경로레벨요소

Search Result 13, Processing Time 0.017 seconds

Distributed Hierarchical Location Placement of Core Nodes in the OCBT Multicast Protocol (OCBT 멀티캐스트 프로토콜에서 core 노드의 분산 계층 위치 결정)

  • 황경호;조동호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.1A
    • /
    • pp.90-95
    • /
    • 2000
  • In the Ordered Core Based Tree(OCBT) protocol, a core location is the most important feature to affect the performance. In this paper, the location placement of multiple level cores is studied. The proposed algorithm isthat each node in the network evaluates a sum of shortest path costs from all the other nodes and the entirenetwork is divided into a hierarchy region to have 3-logical level(Small, Medium, Large). The node to have thelowest cost in each S-Region is decided to be a core node. Then, the core nodes in the each S-Region evaluatea sum of shortest path costs from all the other core nodes in the same M-Region. The core node to have thelowest cost is decided to be the upper level core node. Similarly the highest level core node is decided in theL-Region. The proposed algoritthm is compared with conventional two methods to put the core nodes in thenetwork One is the random method to put the core nodes randomly. The other is the center method to locatethe core node at the nearest node from the center of each S-Region and then to locate the highest level corenode at the nearest core node from the center of the entire network. Extensive simulations are performed in theview of mean tree cost and join latency. Simulation results show that the proposed algorithm has betterperformance than random method or center method.

  • PDF

Using a Learning Progression to Characterize Korean Secondary Students' Knowledge and Submicroscopic Representations of the Particle Nature of Matter (Learning Progression을 적용한 중·고등학생의 '물질의 입자성'에 관한 지식과 미시적 표상에 대한 특성 분석)

  • Shin, Namsoo;Koh, Eun Jung;Choi, Chui Im;Jeong, Dae Hong
    • Journal of The Korean Association For Science Education
    • /
    • v.34 no.5
    • /
    • pp.437-447
    • /
    • 2014
  • Learning progressions (LP), which describe how students may develop more sophisticated understanding over a defined period of time, can inform the design of instructional materials and assessment by providing a coherent, systematic measure of what can be regarded as "level appropriate." We developed LPs for the nature of matter for grades K-16. In order to empirically test Korean students, we revised one of the constructs and associated assessment items based on Korean National Science Standards. The assessment was administered to 124 Korean secondary students to measure their knowledge and submicroscopic representations, and to assign them to a level of learning progression for the particle nature of matter. We characterized the level of students' understanding and models of the particle nature of matter, and described how students interpret various representations of atoms and molecules to explain scientific phenomena. The results revealed that students have difficulties in understanding the relationship between the macroscopic and molecular levels of phenomena, even in high school science. Their difficulties may be attributed to a limited understanding of scientific modeling, a lack of understanding of the models used to represent the particle nature of matter, or limited understanding of the structure of matter. This work will inform assessment and curriculum materials development related to the fundamental relationship between macroscopic, observed phenomena and the behavior of atoms and molecules, and can be used to create individualized learning environments. In addition, the results contribute to scientific research literature on learning progressions on the nature of matter.

Control Method for the Number of Travel Hops for the ACK Packets in Selective Forwarding Detection Scheme (선택적 전달 공격 탐지기법에서의 인증 메시지 전달 홉 수 제어기법)

  • Lee, Sang-Jin;Kim, Jong-Hyun;Cho, Tae-Ho
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.2
    • /
    • pp.73-80
    • /
    • 2010
  • A wireless sensor network which is deployed in hostile environment can be easily compromised by attackers. The selective forwarding attack can jam the packet or drop a sensitive packet such as the movement of the enemy on data flow path through the compromised node. Xiao, Yu and Gao proposed the checkpoint-based multi-hop acknowledgement scheme(CHEMAS). In CHEMAS, each path node enable to be the checkpoint node according to the pre-defined probability and then can detect the area where the selective forwarding attacks is generated through the checkpoint nodes. In this scheme, the number of hops is very important because this parameter may trade off between energy conservation and detection capacity. In this paper, we used the fuzzy rule system to determine adaptive threshold value which is the number of hops for the ACK packets. In every period, the base station determines threshold value while using fuzzy logic. The energy level, the number of compromised node, and the distance to each node from base station are used to determine threshold value in fuzzy logic.