• Title/Summary/Keyword: 경량 인증 프로토콜

Search Result 82, Processing Time 0.024 seconds

Authentication Protocol Supporting Secure Seamless Handover in Network Mobility (NEMO) Environment (네트워크 이동성 환경에서 안전한 Seamless 핸드오버 지원을 위한 인증 프로토콜)

  • Kim, Jong-Young;Yoon, Yong-Ik;Lee, Kang-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.9
    • /
    • pp.57-64
    • /
    • 2012
  • The existing protocols proposed in network mobility (NEMO) environment can require many computational costs and can bring about a delay of binding update. To solve these problems, in this paper we propose an authentication protocol supporting secure seamless handover in NEMO environment. The proposed protocol can handle quickly mutual authentication between a mobile router (MR) and an access router (AR), which uses group key among ARs and a master key (MK) issuing from key issuing server (KIS) for reducing the time of binding update as much as possible. In performance, the proposed protocol can process quickly binding update with little computational cost comparison with the existing binding update protocols and it results in robustness against existing attacks.

Key-Agreement Protocol between IoT and Edge Devices for Edge Computing Environments (에지 컴퓨팅 환경을 위한 IoT와 에지 장치 간 키 동의 프로토콜)

  • Choi, Jeong-Hee
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.2
    • /
    • pp.23-29
    • /
    • 2022
  • Recently, due to the increase in the use of Internet of Things (IoT) devices, the amount of data transmitted and processed to cloud computing servers has increased rapidly. As a result, network problems (delay, server overload and security threats) are emerging. In particular, edge computing with lower computational capabilities than cloud computing requires a lightweight authentication algorithm that can easily authenticate numerous IoT devices.In this paper, we proposed a key-agreement protocol of a lightweight algorithm that guarantees anonymity and forward and backward secrecy between IoT and edge devices. and the proposed algorithm is stable in MITM and replay attacks for edge device and IoT. As a result of comparing and analyzing the proposed key-agreement protocol with previous studies, it was shown that a lightweight protocol that can be efficiently used in IoT and edge devices.

A Light-weight PKM Mutual Authentication Protocol for Improving Initial Authentication in WiMAX (WiMAX 초기 인증을 향상시킨 경량화된 PKM 상호 인증 프로토콜)

  • Jeong, Yoon-Su;Kim, Yong-Tae;Park, Gil-Cheol;Lee, Sang-Ho
    • The KIPS Transactions:PartC
    • /
    • v.16C no.2
    • /
    • pp.257-266
    • /
    • 2009
  • Now a days, as increased the use of mobile units like a laptop computer and PDA, the demand for high speed internet service is increasing. On the other hand, PKMv2 which is provided from IEEE 802.16e cannot support fully on the security of high speed internet service. This paper proposes light-weight mutual authentication protocol which solved security problem of PKMv2 related to integrity of mobile node for transmission of safe high speed data of mobile node operating in mobile WiMAX environment. Proposed mutual authentication protocol increases the efficiency as the user in network can move in network safely without additional procedure of authentication between subscriber and base station after user's initial authentication. Also, the proposed mutual authentication protocol is safe from the security attack (the man-in-the-middle attack and reply attack) between subscriber and base station by generating a key adopt to PRF() function using random number and secret value in order to secure certification.

A Lightweight Authentication and Key Agreement Protocol in Wireless Sensor Networks (무선센서 네트워크에서 경량화된 인증과 키 동의 프로토콜)

  • Yoon, Sin-Sook;Ha, Jae-Cheol
    • Journal of Internet Computing and Services
    • /
    • v.10 no.2
    • /
    • pp.41-51
    • /
    • 2009
  • Recently, there are many researches on security to remove vulnerability which is caused by wireless communication in wireless sensor networks. To guarantee secure communication, we should basically provide key management for each node, mutual authentication and key agreement protocol between two nodes. Although many protocols are presented to supply these security services, some of them require plentiful storage memory, powerful computation and communication capacity. In this paper, we propose a lightweight and efficient authentication and key agreement protocol between two sensor nodes, which is an enhanced version of Juang's scheme. In Juang's protocol, sensor node's information used to share a secret key should be transmitted to registration center via a base station. On the contrary, since node's information in our protocol is transmitted up to only base station, the proposed scheme can decrease computation and communication cost for establishing the shared key between two nodes.

  • PDF

An Enhanced Forward Security on JK-RFID Authentication Protocol (JK-RFID 인증 프로토콜에 대한 개선된 전방향 안전성)

  • Jeon, Dong-Ho;Choi, Seoung-Un;Kim, Soon-Ja
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.21 no.5
    • /
    • pp.161-168
    • /
    • 2011
  • In 2009, Jeon et al proposed the lightweight strong authentication and strong privacy protocol, where the tag requrires only simple bitwise operations and random number generator. JK-RFID authentication protocol provides strong security: eavesdropping, replay, spoofing, Location tracking, DoS attack and forward security. Nevertheless, this paper points out the vulnerability of the forward security and improve the process of key updating. As a result, proposes an enhanced JK-RFID authentication protocol providing forward security and verify its satisfaction. In addition, a security and an efficiency of the proposed scheme analyze. Since partial adjustments of the key updating operation in JK-RFID authentication protocol, our protocol improve the forward security.

A Design of Lightweight RFID Authentication Protocol Errors Correction Using Re-Counter (재카운터를 이용해 오류를 수정하는 경량화 RFID 인증 프로토콜 설계)

  • OH, Gi-Oug
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.4
    • /
    • pp.149-157
    • /
    • 2011
  • Passive tags are inferior to active tags in processing efficiency, so they have difficulty in largevolume processing. The proposed protocol reduces the volume of computation in passive tags and, at the same time, improves authentication for enhanced safety and security. That is, different from existing RFID protocols that return the same value even if an error happens when the reader reads a tag, the improved RFID security protocol returns a new value using a re-counter and processes the computation part of a tag in the reader or in a back.end system. Even if the information of a tag is acquired by an malicious way, it is not actual information but encrypted information that is not usable. In addition, even if tag information is read in sequence, it is changed in each read, so the protocol is safe from Location Tracking.

A Low-weight Authentication Protocol using RFID for IPTV Users (RFID를 이용한 IPTV 사용자의 경량화 인증 프로토콜)

  • Jeong, Yoon-Su;Kim, Yong-Tae;Park, Gil-Cheol;Lee, Sang-Ho
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.19 no.2
    • /
    • pp.105-115
    • /
    • 2009
  • At the most recent, IPTV service is increasing, which isa communicative broadcasting fusion service that provides various multimedia contents interactively followed by user's request through super high-speed internet. For IPTV user service with high mobility, IPTV user's enrollment is essential. However, IPTV service provided to mobile users can't provide the certification of mobile user securely. This paper proposes light user certification protocol which can certificate mobile users by attaching RFID to IPTV STB for secure awareness of mobile users who get IPTV service. The proposed protocol prevent reply attack and man-in-the-middle attack from happening oftenin a wireless section by transmitting the result value hashed by hash function with both its' ID and random number received from tag after tag transmits random number which generated randomly in the process of certification of mobile user to IPTV STB.

Design and Implementation of Double-Key based Light Weight Security Protocol in Ubiquitous Sensor Network (유비쿼터스 센서 네트워크에서 더블키를 이용한 경량 보안 프로토콜 설계 및 구현)

  • Zhung, Yon-Il;Lee, Sung-Young
    • The KIPS Transactions:PartC
    • /
    • v.14C no.3 s.113
    • /
    • pp.239-254
    • /
    • 2007
  • Ubiquitous computing supports environment to freely connect to network without restrictions of place and time. This environment enables easy access and sharing of information, but because of easy unauthorized accesses, specified security policy is needed. Especially, ubiquitous sensor network devices use limited power and are small in size, so, many restrictions on policies are bound to happen. This paper proposes double-key based light weight security protocol, independent to specific sensor OS, platform and routing protocol in ubiquitous sensor network. The proposed protocol supports safe symmetric key distribution, and allows security manager to change and manage security levels and keys. This had a strong merit by which small process can make large security measures. In the performance evaluation, the proposed light weight security protocol using double-key in ubiquitous sensor network allows relatively efficient low power security policy. It will be efficient to ubiquitous sensor network, such as smart of ace and smart home.

Strong Yoking-Proof Protocol using Light-Weighted MAC (경량화된 MAC을 이용한 강력한 Yoking-Proof 프로토콜)

  • Cho, Chang-Hyun;Lee, Jae-Sik;Kim, Jae-Woo;Jun, Moon-Seog
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.19 no.6
    • /
    • pp.83-92
    • /
    • 2009
  • Ari Juels proposed Yoking-Proof protocol for authenticating multiple tags simultaneously using RFID system. Because common Yoking-Proof methods authenticate by using MAC (Message Authentication Code), it is difficult to apply them to inexpensive tags. It is also difficult to implement common hash functions such as MD5 in inexpensive tags. So, Ari Juels also proposed a lightweighted Yoking-Proof method with only 1 authentication. However, Minimalist MAC, which is a lightweighted MAC used in the proposed method is for single-use, and the proposed structure is vulnerable to replay attacks. Therefore, in this study, the minimalist MAC using Lamport's digital signature scheme was adopted, and a new type of Yoking-Proof protocol was proposed where it uses tags that are safe from replay attacks while being able to save multiple key values.

A Lightweight Authentication Protocol for Ambient Assisted Living Systems (전천 후 생활 지원 시스템을 위한 경량 인증 프로토콜)

  • Yi, Myung-Kyu;Whangbo, Taeg-Keun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.5
    • /
    • pp.9-16
    • /
    • 2017
  • Recent advances in healthcare technologies along with improved medical care have led to a steady increase in life expectancy over the past few decades. As a result, the world population is aging rapidly. Various researches have been carried out to provide information and communication technologies based solutions that enhance the well-being of elderly people and provide them with a well margin of independency in their daily life. Ambient assisted living can be defined as the use of information and communication technologies in a person's daily living and working environment to enable them to stay active longer, remain socially connected and live independently into old age. Since the information transmitted in ambient assisted living systems is very sensitive, the security and privacy of such data are becoming important issues that must be dealt with. In this paper, we propose a novel lightweight authentication protocol for the ambient assisted living systems. The proposed authentication protocol not only supports several important security requirements needed by the ambient assisted living systems, but can also withstand various types of attacks. In addition, the security analysis results show that the proposed authentication protocol is more efficient and secure than the existing authentication protocols.