• Title/Summary/Keyword: 경량 기포 콘크리트

Search Result 158, Processing Time 0.035 seconds

Evaluation of Reproducibility for Mechanical Properties of Lightweight Concrete using Bottom Ash Aggregates and Foam (바텀애시 골재와 기포를 이용한 경량 콘크리트의 역학적 특성에 대한 재현성 평가)

  • Ji, Gu-Bae;Mun, Ju-Hyun;Yang, Keun-Hyeok
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.3
    • /
    • pp.202-209
    • /
    • 2019
  • The objective of this study is to examine the reproducibility for compressive strength development and mechanical properties of lightweight concrete made using bottom ash aggregates and foam(LWC-BF). Based on the mix proportions conducted by Ji et al., six identical mixes were prepared with different actual foam volume ratios from 0% to 25% and water-to-binder ratios from 25% to 30%. The presently measured properties, including initial slump, slurry density, compressive strength gains at different ages, splitting tensile strength, and modulus of rupture, were very close to those determined in the previous tests by Ji et al. Thus, the developed LWC-BF has a good potential in obtaining a reproducibility for compressive strength development and mechanical properties even though the troubles of mixing control owing to the addition of preformed foam.

Mechanical Performance Evaluation of Cement Paste with Foaming Agent using FEM Analysis Based on Picture Image (화상 이미지 기반 FEM 해석을 이용한 기포제 혼입 시멘트 페이스트의 역학 성능 평가)

  • Kim, Bo-Seok;Shin, Jun-Ho;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.1
    • /
    • pp.35-43
    • /
    • 2016
  • Concrete is a representative heterogeneous material and mechanical properties of concrete are influenced by various factors. Due to the fact that pores in concrete affect determining compressive strength of concrete, studies which deal with distribution and magnitudes of pores are very important. That way, studies using picture imaging have been emerged. Studies on mechanical performance evaluation of structural lightweight foamed concrete and FEM analysis based on picture image are inadequate because lightweight foamed concrete has been researched for only non-structural. Therefore, in this study, cement paste with foaming agent to evaluate mechanical performance is made, FEM analysis with picture image is conducted and young's modulus of experiment and analysis are compared. In this study, dosage of foaming agent is determined 7 level to check pore distribution and water-binder ratio is determined 20% to progress research about structural light weight foamed concrete. Weight of unit volume is minimum at 0.8% of foaming agent dosage. However, weight of unit volume is increased over 0.8% of foaming agent dosage because of interconnection with independent pores. For FEM analysis, cement paste is photographed to use image analyzer(HF-MA C01). Consequently, the fact that Young's Modulus of experiment and FEM analysis are same is drawn by using OOF(Object Oriented Finite elements).

Literature study on the improvement of lightweight concrete in perspective of foaming agent (기포제 관점에서 경량기포 콘크리트의 개선방향에 관한 문헌적 연구)

  • Choi, Myeong-In;Lee, Han-seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.141-142
    • /
    • 2015
  • This literature study is focused on the improvement of lightweight concrete in perspective of foaming agent. Lightweight concrete is the cured concrete as putting required amount of foaming agent to slurry which is a mixture of a certain amount of cement, sand, and water. It has lower density than general concrete, because foaming agent disintegrates numerous bubbles evenly and independently. Thus, it is capable of lightening the weight and great for sound absorption and insulation, In foreign countries, studies for structural lightweight concrete mainly of tunnel grouting and weight lightening of heavy structures are going along actively. Domestically, exterior panel and ALC blocks are alternatively used for flooring. Therefore, this research consider improvement of lightweight concrete in perspective of foaming agent with foundation study.

  • PDF

A Experimental Study on the Physical properties of Lightweight Foamed Concrete Using Mineral Foam Agent (광물성 기포제를 이용한 경량기포콘크리트의 물리적성질에 관한 실험적 연구)

  • You, Jei-Jun;Lee, Han-Seung;Bae, Kyu-Woong;Lee, Sang-Sup;Yeon, Gyu-Bong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.11a
    • /
    • pp.49-52
    • /
    • 2003
  • The objective of this study the mechanical characteristics of prefoamed lightweight foamed concrete using the mineral foam agent which has high lightness, and strength. The compressive strength of lightweight foamed concrete using mineral foam agent are about 2 times degree high those the of lightweight foamed concrete using vegetable foam agent. Lightweight foamed concrete was able to obtain the result of 50kg/㎠ or more compressive strength, when was unit weight 0.8t/㎡. In the case of the same unit weight of concrete, it is influenced by w/c of foam agent ratio. The paper present extensive data on characteristics of compressive strength of the concrete manufatured with the different factors in mix design and also present optimum mix proportion.

  • PDF

A Experimental Study on the Physical properties of Lightweight Foamed Concrete Using Mineral Foam Agent (광물성 기포제를 이용한 경량기포콘크리트의 물리적성질에 관한 실험적 연구)

  • 유제준;이한승;배규웅;이상섭;연규봉
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.49.1-52
    • /
    • 2003
  • The objective of this study the mechanical characteristics of preformed lightweight foamed concrete using the mineral foam agent which has high lightness, and strength. The compressive strength of lightweight foamed concrete using mineral foam agent are about 2 times degree high those the of lightweight foamed concrete using vegetable foam agent. Lightweight foamed concrete was able to obtain the result of 50kg/$\textrm{m}^3$ or more compressive strength, when was unit weight 0.8t/$\textrm{m}^3$. In the can of the same unit weight of concrete, it is influenced by w/c of loan agent ratio. The paper present extensive data on characteristics of compressive strength of the concrete manufactured with the different factors in mix design and also present optimum mix proportion.

  • PDF

Mix Design and Mechanical Properties of Aerated Concrete for Incorporation of Low Temperature PCM (저온 PCM 혼입을 위한 경량기포콘크리트의 배합설계 및 기계적 특성)

  • Baasankhuu, Batzaya;Lim, Myung-Kwan;Lim, Hee-Seob;Choi, Dong-Uk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.4
    • /
    • pp.110-115
    • /
    • 2017
  • This research was performed to investigate the mechanical performance of lightweight concrete including phase changing material(Low temperature PCM). Micro capsulised PCM consisted of wax type core and melamine based wall. Also, for PCM of one single kind, paraffin wax was inserted into Vermiculite and the surface was coated with melamine resin. Interfacial polymerization is based on the principle that macromolecule reaction takes place on the surfaces between 1-dodecanol(core material) and water (solvent) to form the wall material. Lightweight concrete has compressive strength of 10 MPa, tensile strength of 1.5 MPa, and oven dried density of 1.0kg/liter which included 10%, 20%, or 30% PCM by weight. To do so, this study fabricated light-weight foamed concrete ($1.0kg/m^3$) in pre-foaming method and mixed it with PCM micro capsule of 1-dodecanol and melamine to examine its physical properties.

Structural Load Bearing Capacity of Wall System Framed by Studs and Runners using Square Steel Tubes (각형강관을 이용한 스터드-런너 골조형 벽체시스템의 구조내력 성능평가)

  • Kim, Ho Soo;Hong, Seok Il;Lim, Young Do
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.3 s.76
    • /
    • pp.253-262
    • /
    • 2005
  • Because the framed wall system using steel studs and runners with square steel tubes as structural elements is reinforced by the horizontal members called runners, it has more strength and load bearing capacity than the steel house wall system. Also, this system improves adiabatic and sound insulation performance by filling up the autoclaved lightweight concrete. We need to evaluate load bearing capacity according to the axial load and lateral load in case this system is applied in the housing system with 3~5 stories through variations in intervals for the runners under the placement effect of autoclaved lightweight concrete. Therefore, this study seeks to analyze axial and shear behavior of the framed wall system according to the placement effect of autoclaved lightweight concrete, and to secure safety for the vertical and lateral loads.

An Experimental Study on the Rheology Characteristics of Insulating Concrete (단열콘크리트의 레올로지 특성에 관한 실험적 연구)

  • Ryu, Dong-Woo;Ji, Suk-Won;Jeon, Hyun-Kyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.2
    • /
    • pp.118-124
    • /
    • 2016
  • The purpose of this study is to analyze the rheology characteristics of insulating concrete for each type of insulation performance improvement material and utilize the result as preliminary data for optimal flow designing and pumping analysis. As a result, when lightweight aggregate was mixed, the yield stress decreased significantly, and in case of type 2, the combination of micro form cell admixture (MFA) and calcined diatomite powder (DM) showed the most ideal flow characteristics. In case of type 3, the combination of micro form cell admixture (MFA), calcined diatomite powder (DM) and lightweight aggregate (L) showed the best flow characteristics.

Chemical Properties of Light-weight Foamed Concrete Using WCP in Hydrothermal Reaction Condition (수열반응 조건에서 폐콘크리트 미분말을 사용한 경량기포콘크리트의 화학적 특성)

  • Park, Hyo-Jin;Lee, Kyung-Hyun;Kang, Cheol;Jeong, Ji-Yong;Lee, Dae-Geun;Kim, Jin-Man
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.375-376
    • /
    • 2010
  • This study is shown the chemical characteristics by SEM and XRD for the Light-weight Foamed Concrete according to replacement ratio of WCP and the autoclave curing time. From the SEM of the Light-weight Foamed Concrete after hydrothermal raction, regardless of replacement ratio of WCP and the autoclave curing time, forms the crystal hydrates having various shapes such as board and fiber etc is generated. From the XRD, it seems that the tobermorite hydrate is originated from crystalized quartz.

  • PDF