DOI QR코드

DOI QR Code

Mix Design and Mechanical Properties of Aerated Concrete for Incorporation of Low Temperature PCM

저온 PCM 혼입을 위한 경량기포콘크리트의 배합설계 및 기계적 특성

  • Received : 2017.05.08
  • Accepted : 2017.05.23
  • Published : 2017.07.01

Abstract

This research was performed to investigate the mechanical performance of lightweight concrete including phase changing material(Low temperature PCM). Micro capsulised PCM consisted of wax type core and melamine based wall. Also, for PCM of one single kind, paraffin wax was inserted into Vermiculite and the surface was coated with melamine resin. Interfacial polymerization is based on the principle that macromolecule reaction takes place on the surfaces between 1-dodecanol(core material) and water (solvent) to form the wall material. Lightweight concrete has compressive strength of 10 MPa, tensile strength of 1.5 MPa, and oven dried density of 1.0kg/liter which included 10%, 20%, or 30% PCM by weight. To do so, this study fabricated light-weight foamed concrete ($1.0kg/m^3$) in pre-foaming method and mixed it with PCM micro capsule of 1-dodecanol and melamine to examine its physical properties.

이 연구는 상변화 물질(저온 PCM)을 포함한 경량 콘크리트의 기계적 성능을 검토하기 위해 수행되었다. Micro capsulised PCM은 wax type core와 melamine based wall으로 구성되어있다. 또한, 단일 종류의 PCM의 경우, Vermiculite에 파라핀 왁스를 삽입하고 그 표면을 멜라민 수지로 코팅 하였다. 계면 중합은 1-dodecanol(핵심 물질)과 물(용매) 사이의 표면에서 중합반응이 일어나 벽 물질을 형성한다는 원리에 기반한다. 경량 콘크리트는 10 MPa의 압축 강도, 1.5 MPa의 인장 강도 및 1.0 kg/L의 절건 밀도를 가지며 10 %, 20 % 또는 30 %의 PCM을 포함하고 있다. 이를 위해 예비 배합으로 경량 기포 콘크리트($1.0kg/m^3$)를 제조 한 후 1-dodecanol 및 멜라민의 PCM 마이크로 캡슐과 혼합하여 그 물성을 조사하였다.

Keywords

References

  1. Yuan, B., Straub, C., Segers, S. Yu, Q. L., and Brouwers, H. J. H. (2017), Sodium Carbonate Activated Slag as Cement Replacement in Autoclaved Aerated Concrete, Ceramics International, 43(8), 6039-6047. https://doi.org/10.1016/j.ceramint.2017.01.144
  2. Im J. K. (2004), The Climatic Change Convention Counteract for Long Term Policies and Aggrement, Korea Energy Economics Institute, 289.
  3. Jadvyga Keriene, Modestas Kligys, Antanas Laukaitis, Grigory Yakovlev, Algimantas Spokauskas, Marius Aleknevicius, (2013), The Influence of Multi-walled Carbon Nanotubes Additive on Properties of Non-autoclaved and Autoclaved Aerated Concretes, Construction and Building Materials, 49, 527-535. https://doi.org/10.1016/j.conbuildmat.2013.08.044
  4. Ghazi Wakili, K., Hugi, E., Karvonen, L., Schnewlin, P. and Winnefeld, F. (2015), Thermal Behaviour of Autoclaved Aerated Concrete Exposed to Fire, Cement and Concrete Composites, 62, 52-58. https://doi.org/10.1016/j.cemconcomp.2015.04.018
  5. Sim, K. S. (2009), An Experimental Study on the Insulation Property and the Mechanical Property of structural Lightweight Mortar using Micro Form Agent, MA Thesis, Hanyang University.
  6. The Concrete Center (2006), Utilization of Thermal Mass in Non-residential Buildings, CCIP 020, UK.
  7. Yuanming Song, Baoling Li, En-Hua Yang, Yiquan Liu, Tian Ding, (2015), Feasibility Study on Utilization of Municipal Solid Waste Incineration Bottom Ash as Aerating Agent for the Production of Autoclaved Aerated Concrete, Cement and Concrete Composites, 56, 51-58. https://doi.org/10.1016/j.cemconcomp.2014.11.006
  8. Zhan Li, Li Chen, Qin Fang, Hong Hao, Yadong Zhang, Wensu Chen, Hengbo Xiang, Qi Bao, (2017), Study of Autoclaved Aerated Concrete Masonry Walls Under Vented Gas Explosions Original, Engineering Structures, 141, 444-460. https://doi.org/10.1016/j.engstruct.2017.03.033