• Title/Summary/Keyword: 경량탄소섬유

Search Result 94, Processing Time 0.021 seconds

Evaluation of the Fatigue Life for Carbon/Epoxy Composite Material by the Residual Strength Degradation Analysis (탄소섬유/에폭시 복합재료의 잔류강도 저하해석에 의한 피로수명 평가)

  • 심봉식;성낙원;옹장우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.1908-1918
    • /
    • 1991
  • Fatigue tests have been carried out to measure the degradation of the residual strength and the fatigue life in carbon/epoxy (0/45/90/-45)$_{2s}$ composite materials. Theoretical predictions of residual strength and fatigue life were compared with experimental results. Distribution characteristics were studied using the probability of failure based on the cumulative distribution function and median rand. The static ultimate strength of carbon/epoxy composites used herein is observed to be relatively higher than that of existing similar composites ; while fatigue life is shorter due to the brittleness of matrix. The fatigue life obtained in these experiments is shorter than that estimated by residual strength degradation model when the stress level above 0.6 For the stress level of 0.6, the experimental value was abruptly increased. The cumulative distribution function for the static ultimate strength is well correlated to that for the strength converted from the measured fatigue life. Also, the predicted distribution of residual strength shows good agreement with the experimental results. Therefore, it is proven that the residual strength degradation model is reasonable.e.

Fatigue Damage Evaluation of Woven Carbon-Fiber-Reinforced Composite Materials by Using Fatigue Damage Model (피로 손상 모델을 이용한 직조 탄소섬유강화 복합재료의 피로 손상 평가)

  • Park, Hong-Sun;Choi, Jung-Hun;Koo, Jae-Mean;Seok, Chang-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.6
    • /
    • pp.757-762
    • /
    • 2010
  • Owing to the high specific strength and stiffness of composite materials, they are extensively used in mechanical systems and in vehicle industries. However, most mechanical structures experience repeated load and fatigue. Therefore, it is important to perform fatigue analysis of fiber-reinforced composites. The properties of composite laminates vary depending upon the stacking sequence and stacking direction. Fatigue damage of composite laminates occurs according to the following sequence: matrix cracking, delamination, and fiber breakage. In this study, fatigue tests were performed for damage analysis. Fatigue damages, which have to be considered in fatigue analysis, are determined by using the stiffness values calculated from hysteresis loops, and the obtained fatigue damage curve is examined using Mao's equation and Abdelal's equation.

Seismic Strengthening and Performance Evaluation of Damaged R/C Buildings Strengthened with Glass Fiber Sheet and Carbon Fiber X-Brace System (GFS-CFXB 내진보강법을 이용한 지진피해를 받은 R/C 건물의 내진성능 평가 및 내진보강 효과)

  • Lee, Kang-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.6
    • /
    • pp.667-674
    • /
    • 2013
  • Improving the earthquake resistance of buildings through seismic retrofitting using steel braces can result in brittle failure at the connection between the brace and the building, as well as buckling failure of the braces. This paper proposes a new seismic retrofit methodology combined with glass fiber sheet (GFS) and non-compression X-brace system using carbon fiber (CFXB) for reinforced concrete buildings damaged in earthquakes. The GFS is used to improve the ductility of columns damaged in earthquake. The CFXB consists of carbon fiber bracing and anchors, to replace the conventional steel bracing and bolt connection. This paper reports the seismic resistance of a reinforced concrete frame strengthened using the GFS-CFXB system. Cyclic loading tests were carried out, and the hysteresis of the lateral load-drift relations as well as ductility capacities were investigated. Carbon fiber is less rigid than the conventional materials used for seismic retrofitting, resulting in some significant advantages: the strength of the structure increased markedly with the use of CF X-bracing, and no buckling failure of the bracing was observed.

Analysis of Characteristics of CFRP Composites Exposed Under High-Temperature and High-Humidity Environment for a Long Period (고온 다습한 환경에 장기간 노출된 CFRP 복합재료의 특성 분석)

  • Hong, Suk-Woo;Ahn, Sang-Soo;Koo, Jae-Mean;Seok, Chang-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.8
    • /
    • pp.889-895
    • /
    • 2012
  • Carbon fiber reinforced plastic (CFRP) composites have high specific stiffness and high specific strength. Therefore, they are increasingly being use, instead of conventional metallic materials in the aviation and automobile industries, where there is a strong demand for lightweight materials. In aircraft, the fuselage is exposed to severe conditions of high temperatures and high humidity. Therefore, it is necessary to estimate the strength of CFRP composites under real conditions from the viewpoint of aircraft safety. In this study, CFRP specimens were immersed in distilled water at $75^{\circ}C$ for a long time. Then, tensile tests were performed on these specimens, and the fracture characteristics of the fractured surfaces were analyzed using SEM. A fatigue test was performed on specimens immersed for 300 days with R=0.1, and it was confirmed that the fatigue life deteriorated in immersed specimens compared to specimens that were not immersed.

Study on the Thermal Radiation Performance of the Multi-functional Structure Made of the Carbon Fiber Composite Material (탄소섬유 복합재를 이용한 위성용 다기능 구조체의 방열성능 분석)

  • Kim, Taig-Young;Hyun, Bum-Seok;Seo, Young-Bae;Jang, Tae-Seong;Seo, Hyun-Suk;Lee, Jang-Joon;Kim, Won-Seock;Rhee, Ju-Hun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.2
    • /
    • pp.157-164
    • /
    • 2012
  • The design strategy of the multi-functional structure is that the electrical components and the circuits are directly put on their supporting structural panel in which the radiation shields and the thermal control functions are integrated. Applying the multi-functional structure reduces the total mass and size of the space system and makes it possible to lower launch cost. In present study the performance of thermal radiation for six types of multi-functional structure are investigated by the numerical method. The effect of the rib configuration on heat transfer for the multi-functional-structure is not important alone but is meaningful considering with the structural stiffness, difficulty of manufacturing and mass increase. In heat spreading point of view, the thickness of the outer conductive layer is important rather than the rib configuration and the trade-off study with the mass and thickness is required for optimum design.

Static Cyclic Loading Test of the Seismic and Energy Simultaneous Retrofit Panel for Existing Unreinforced Masonry Buildings (기존 비보강 조적조 건축물의 내진 및 에너지 동시보강패널 정적반복가력실험)

  • Choi, Hyoung-Wook;Lee, Sang-Ho;Choi, Hyoung-Suk;Kim, Tae-Hyeong;Baek, Eun-Rim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.4
    • /
    • pp.81-90
    • /
    • 2020
  • A textile and capillary tube composite panel(TCP) was developed to simultaneously retrofit the seismic performance and the energy efficiency (e.g. heating or insulation performance) of existing unreinforced masonry (URM) buildings. TCP is a light-weight mortar panel in which carbon textile reinforcements and capillary tubes are embedded. Textile reinforcements plays a role of seismic retrofit and capillary tubes that hot water circulates contribute to the energy retrofit. In this paper, the static cyclic loading tests were performed on the masonry walls with/without TCP to understand the seismic retrofit effect of TCP retrofit and the results were summarized. The results of the test showed that the TCP contributed to increase the capacity of the Shear strength and ductility of the URM walls. In addition, the deformation of the wall after cracking was substantially controlled by the carbon textile.

A Property of Crack Propagation at the Specimen of CFRP with Layer Angle (적층각도를 지닌 CFRP 시험편에서의 크랙전파 특성)

  • Hwang, Gue Wan;Cho, Jae Ung;Cho, Chong Du
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.12
    • /
    • pp.1013-1019
    • /
    • 2016
  • CFRP is the composite material manufactured by the hybrid resin on the basis of carbon fiber. As this material has the high specific strength and the light weight, it has been widely used at various fields. Particularly, the unidirectional carbon fiber can be applied with the layer angle. CFRP made with layer angle has the strength higher than with no layer angle. In this paper, the property of crack growth due to each layer angle was investigated on the crack propagation and fracture behavior of the CFRP compact tension specimen due to the change of layer angle. The value of maximum stress is shown to be decreased and the crack propagation is slowed down as the layer angle is increased. But the limit according to the layer angle is shown as the stress is increased again from the base point of the layer angle of $60^{\circ}$. This study result is thought to be utilized with the data which verify the probability of fatigue fracture when the defect inside the structure at using CFRP of mechanical structure happens.

Change of Mechanical Properties of Injection-Molded Glass-Fiber-Reinforced Plastic (GFRP) According to Temperature and Water Absorption for Vehicle Weight Reduction (차량 경량화를 위한 사출성형 유리섬유강화플라스틱의 온도 및 수분 흡수에 따른 기계적 물성 변화)

  • Chun, Doo-Man;Ahn, Sung-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.2
    • /
    • pp.199-204
    • /
    • 2013
  • Owing to the global energy crisis, studies have strongly focused on realizing energy savings through vehicle weight reduction using light metal alloys or polymer composites. Polymer composites afford many advantages including enabling the fabrication of complex shapes by injection molding, and glass and carbon fibers offer improved mechanical properties. However, the high temperature in an engine room and the high humidity during the rainy season can degrade the mechanical properties of the polymer. In this study, the mechanical properties of injection-molded glass-fiber-reinforced polymer were assessed at a temperature of $85^{\circ}C$ and the maximum moisture absorption conditions. The result showed a 23% reduction in the maximum tensile strength under high temperature, 30% reduction under maximum moisture absorption, and 70% reduction under both heat and moisture conditions. For material selection during the design process, the effects of high temperature and high humidity should be considered.

Durability Assessment of CFRP Lower Control Arm Using Stress-Life Method (응력수명법을 이용한 탄소섬유강화복합재 로어 컨트롤 아암의 내구성 평가)

  • Jang, Jaeik;Lim, Juhee;Lee, Jongsoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.11
    • /
    • pp.1131-1137
    • /
    • 2017
  • Recently, regulations on fuel efficiency and $CO_2$ emissions have been reinforced in automobile industries. As a result, many companies make an effort to satisfy these regulations by adapting composite materials to the automobile body as well as its components. In particular, the lower control arm in the suspension system is subjected to heavy loads and is designed to be thick to meet operating loads. Therefore, it is essential for the lower control arm to reduce weight and to secure the durability assessment. In this paper, we conducted structural analysis by performing stress and stiffness analysis under given load conditions through finite element analysis, and verified whether it satisfies the load and stiffness conditions. The inertia relief method is adapted to the process of analysis, and the principal stress is used as a criterion for evaluation. Based on these results, the durability assessment is carried out using the stress-life method.

Prediction of Fracture Strength of Woven CFRP Laminates According to Fiber Orientation (평직 CFRP 적층복합재료의 섬유배열각도에 따른 파괴강도 예측)

  • Kang, Min-Sung;Park, Hong-Sun;Choi, Jung-Hun;Koo, Jae-Mean;Seok, Chang-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.8
    • /
    • pp.881-887
    • /
    • 2012
  • CFRP composite materials have been widely used in various fields of engineering because of their excellent properties. They show high specific stiffness and specific strength compared with metallic materiasl. Woven CFRP composite materials are fabricated from carbon fibers with two orientation angles ($0^{\circ}/90^{\circ}$), which influences the mechanical properties. Therefore, woven CFRP composite materials show different types of fracture behavior according to the load direction. Therefore, the fracture behavior of these materials needs to be evaluated according to the load direction when designing structures using these materials. In this study, we evaluate the fracture strength of plain-woven CFRP composite materials according to the load direction. We performed tests for six different angles (load direction: $0^{\circ}/90^{\circ}$, $30^{\circ}/-60^{\circ}$, $+45^{\circ}/-45^{\circ}$) and estimated the fracture strength for an arbitrary fiber angle by using the modified Tan's theory and harmonic function.