• Title/Summary/Keyword: 경량탄소섬유

Search Result 94, Processing Time 0.019 seconds

Evaluation of Bonding Performance of Hybrid Materials According to Laser and Plasma Surface Treatment (레이저 및 플라즈마 표면처리에 따른 이종소재 접합특성평가)

  • Minha Shin;Eun Sung Kim;Seong-Jong Kim
    • Composites Research
    • /
    • v.36 no.6
    • /
    • pp.441-447
    • /
    • 2023
  • Recently, as demand for high-strength, lightweight materials has increased, there has been great interest in joining with metals. In the case of mechanical bonding, such as bolting and riveting, chemical bonding using adhesives is attracting attention as stress concentration, cracks, and peeling occur. In this paper, surface treatment was performed to improve the adhesive strength, and the change in adhesive strength was analyzed. For the adhesive strength test were conducted with Carbon Fiber Reinforced Plastic(CFRP), CR340(Steel), and Al6061(Aluminum), and laser and plasma surface treatment were used. After plasma surface treatment, the adhesive strength improved by 7.3% and 39.2% in CFRP-CR340 and CFRP-Al6061, respectively. CR340-Al6061 was improved by 56.2% in laser surface treatment. Surface free energy(SFE) was measured by contact angle after plasma treatment, and it is thought that the adhesion strength was improved by minimizing damage through a chemical reaction mechanism. For laser surface treatment, it is thought that creates a rough bonding surface and improves adhesive strength due to the mechanical interlocking effect. Therefore, surface treatment is effect to improve adhesive strength, and based on this paper, the long-term fatigue test will be conducted to prevent fatigue failure, which is a representative cause of actual structural damage.

Manufacturing of geopolymers for replacing autoclaved lightweight concrete panels (ALC 패널 대체용 지오폴리머의 제조)

  • Kim, Minjeong;Kim, Yootaek
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.1
    • /
    • pp.33-39
    • /
    • 2020
  • Lightweight geopolymers were fabricated by using fused slag from integrated gasification combined cycle as a law material and Si sludge from silicon wafer process as a bloating material for the purpose of replacing autoclaved lightweight concrete (ALC). Density and compressive strength of geopolymers were measured and compared with the properties of ALC according to the variation of mol concentration of alkaline activator, W/S ratio, addition of fibers, and addition of polystyrene and the possibility of replacing ALC panel was estimated through the comparisons. Although the geopolymer satisfying the standard of ALC panel was not made by controlling mol concentration and W/S ratio, addition of inserts such as fibers and polystyrene insert was tried to overcome the obstacle of enhancing properties. Geopolymers cannot satisfying the standard of ALC panel by adding carbon or glass fibers; however, adding fibers can be suggested as one of the methods enhancing compressive strength because the compressive strength of the specimen containing 0.3 wt.% glass fibers was increased by 3 times. The maximum addition of polystyrene insert was turned out to be 50 vol.% and the properties of geopolymers varied by the method of insertion. When using single polystyrene insert, compressive strength was 17.8 MPa and density was 0.996 g/㎤ which were similar values to the standard of ALC panel. If the difficulties of reproductivity of production and insertion method of inserts were overcome through the future research, the geopolymers containing polystyrene inserts could possibly replace ALC panel.

A Study on Fracture Behavior of Center Crack at Unidirectional CFRP due to Stacking Angle (적층각도에 따른 단방향 CFRP에서의 중앙 크랙의 파괴 거동에 관한 연구)

  • Park, Jae-Woong;Cheon, Seong-Sik;Cho, Jae-Ung
    • Composites Research
    • /
    • v.29 no.6
    • /
    • pp.342-346
    • /
    • 2016
  • Carbon fiber reinforced plastic (CFRP), one of lightweight materials, is the fiber structure using carbon fiber. It is the composite material that has the characteristics of carbon and plastic. As for the fiber structure, it has the great strength due to fiber direction. CFRP for woven type is used mostly as such a CFRP with lightweight. Woven type is more stable when compared with unidirectional type. On the other hand, woven type is highly priced. Therefore, this study aims to analyze the fiber structure of unidirectional CFRP. In this study, as the stacking angle [0/X/-X/0], X is the variable. This is unidirectional CFRP in which the angle phase of X has been reversed and stacked. By using such a unidirectional CFRP, the analysis model which had a crack at the center as the form of panel with the thickness of 2 mm was used. On analysis, the load is applied on the upper and lower parts being connected with a pin. The damage in the area near center crack was investigated. As for the analysis model, 3D surface model was designed by using CATIA. For CFRP stacking, the stacking direction was determined by using ACP in ANSYS program and the analysis model with two stacks was made. Afterwards, the structural analysis was carried out.

Sound Insulation Performance of Honeycomb Composite Panel for a Tilting Train (틸팅 열차용 허니콤 복합 적층재의 차음성능)

  • Kim, Seock-Hyun;Seo, Tae-Gun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.12
    • /
    • pp.1931-1936
    • /
    • 2010
  • In Korean tilting trains, honeycomb composite panels are used for high speed and light weight. The side wall of a tilting train consists of an aluminum honeycomb coated with carbon-fiber-reinforced epoxy skin and a nomex honeycomb panel as the main structure, with glass wool inserted between the panels. In this study, based on ASTM E2249-02, we measure the intensity sound transmission loss (TL) of the honeycomb composite panels. Using mass law deviation (MLD), we estimate the sound insulation performance of the honeycomb composite panels in terms of their weight and explore the feasibility of substituting a conventional corrugated steel panel. The transmission-loss data of the honeycomb composite panels obtained in the study will be used to establish noise-reduction measures for train compartments.

Analytical and Experimental Study for Development of Composite Coil Springs (복합재 코일스프링 개발을 위한 수치해석 및 실험적 연구)

  • Oh, Sung Ha;Choi, Bok Lok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.1
    • /
    • pp.31-36
    • /
    • 2014
  • This paper shows the feasibility of using carbon-fiber-reinforced polymer (CFRP) composite materials for manufacturing automotive coil springs. For achieving weight reduction by replacing steel with composite materials, it is essential to optimize the material parameters and design variables of the coil spring. First, the shear modulus of a CFRP beam model, which has $45^{\circ}$ ply angles for maximum torsional stiffness, was calculated and compared with the test results. The diameter of the composite spring was predicted to be 17.5 mm for ensuring a spring rate equal to that when using steel material. Finally, a finite element model of the composite coil spring with $45^{\circ}$ ply angles and 17.5 mm wire diameter was constructed and analyzed for obtaining the static spring rate, which was then compared with experimental results.

A Development of Seismic Rehabilitation Method of RC Buildings Strengthened with X-Bracing Using Carbon Fiber Composite Cable (X-가새형 탄소섬유케이블을 이용한 중·저층 철근콘크리트 건물의 내진보강법 개발)

  • Lee, Kang-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.3
    • /
    • pp.1-9
    • /
    • 2014
  • Improving the earthquake resistance of buildings through seismic retrofitting using steel braces can result in brittle failure at the connection between the brace and the building, as well as buckling failure of the braces. In this study, a non-compression cross-bracing system using the Carbon Fiber Composite Cable (CFCC), which consists of CFCC bracing and bolt connection was proposed to replace the conventional steel bracing. This paper presented the seismic resistance of a reinforced concrete frame strengthened using CFCC X-bracing. Cyclic loading tests were carried out, and the maximum load carrying capacity and ductility were investigated, together with hysteresis of the lateral load-drift relations. Test results revealed that the CFCC X-bracing system installed RC frames enhanced markedly the strength capacity and no buckling failure of the bracing was observed.

Comparison between Wire Rope and CFRP UD on Bending Analysis (엘리베이터용 와이어로프와 CFRP UD의 벤딩 해석 비교)

  • Park, Sung-Min;Shin, Dong-Woo;Kwon, Il-Jun;Yoo, Sung-Hun;Moon, Wan-Kee
    • Composites Research
    • /
    • v.28 no.6
    • /
    • pp.378-382
    • /
    • 2015
  • With increasing population density and high-rise expansion of buildings in recent years, elevators have become to play a pivotal role in our everyday lives as most people take an elevator several times even in a day. The elevator penetration and distribution rates in Korea have increased dramatically every year, and the emergence of skyscrapers leads to accelerating the development of elevator industry. Carbon-fiber-reinforced plastics (CFRPs) exhibit better mechanical and thermal properties than steel suitable for uses as elevator wire ropes. In this paper, in order to analyze the properties of CFRPs, the tensile strength of unidirectional (UD) CFRP wire ropes was characterized and finite element analysis was conducted for bending simulation. Simulation results were compared.

Study on Structural Reliability Assessment of a Partition Panel Made of a CFRP(Carbon Fiber Reinforced Plastic) (탄소복합재 부품 파티션패널의 구조 강성/강도 신뢰성 평가에 관한 연구)

  • Lee, Jaejin;Mun, Jihun;Yoon, Wonho;Kang, Dakyung;Ahn, Minsu;Roh, Hyungjin;Kang, Jiheon;Lee, Jaewook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.10
    • /
    • pp.68-74
    • /
    • 2019
  • In the case of a partition panel for a vehicle, it is used as a vehicle chassis component that serves to distinguish the indoor and outdoor spaces of a vehicle and is mounted on a backrest portion of the vehicle's back seat to ensure the convenience of passengers by connecting the floor and the side of the vehicle. Because it is a relatively large-sized plate material among automobile chassis parts except the moving parts and non-ferrous materials can be applied, it is considered as a part having a large light-weight effect. However, the partition panel is one of the vehicle parts that must satisfy the light-weight effect as well as various structural reliability, such as torsional rigidity, vibration, and impact characteristics, for securing the running stability of the vehicle when driving at the same time. So, In this study, the possibility of replacing the aluminum partition panel as CFRP(Carbon Fiber Reinforced Plastic) partition panel is evaluated through comparing the two partition panels by using the structural reliability(stiffness/strength analysis), vibration analysis, impact analysis.

Improvement and Implementation of Unmanned Traffic Enforcement Equipment (무인교통단속장비 개선 및 구현)

  • Lee, Sang-O;Lee, Choul-Ki;Yun, Ilsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.5
    • /
    • pp.42-56
    • /
    • 2022
  • The thesis is automated traffic control equipment system aims to improve. Areas where improvement is needed about the existing automated traffic control equipment by applying the latest technology and to improve the things that can be derived. Reflecting the derived improvements, we intend to present a plan for the design and implementation of a new unmanned traffic control device. The main improvements were designed to change the housing material of the unmanned traffic control equipment, simplify the configuration of the equipment, reduce the weight of the equipment, and change the purpose of the software. In order to evaluate the objective performance of the improved unmanned traffic control equipment through this study, it was requested to a public certification authority. The reliability of the equipment was secured through KC certification and durability test. It is intended to present the feasibility of securing the marketability of the unmanned traffic control equipment by comparing and evaluating the construction period and installation cost with the existing unmanned traffic control equipment.

Development and Evaluation of Large Scale Composite Lattice Structures (대형 복합재 격자구조체 개발 및 평가)

  • Kim, Donggeon;Doh, Youngdae;Kim, Gensang;Kim, Myungjoo;Lee, Sangwoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.6
    • /
    • pp.74-86
    • /
    • 2021
  • The composite lattice structure is a structure that supports the required load with the minimum weight and thickness. Composite lattice structure is manufactured by the filament winding process using impregnating high-strength carbon fiber with an epoxy resin. Filament winding process can laminate and manufacture only structurally necessary parts, composite lattice structure can be applied to aircraft fuselages, satellite and launch vehicles, and guided weapons to maximize weight reduction. In this paper, the development and evaluation of the composite lattice structure corresponding to the entire process from design, analysis, fabrication, and evaluation of large-scale cylindrical and conical composites lattice structure were performed. To be applicable to actual projectiles and guided weapons, we developed a cylindrical lattice structure with a diameter of 2,600 mm and a length of 2,000 mm, and a conical lattice structure with an upper diameter of 1,300 mm, a lower diameter of 2,500 mm, and a length of 900 mm. The performance of the developed composite lattice structure was evaluated through a load test.