• Title/Summary/Keyword: 경량체

Search Result 344, Processing Time 0.031 seconds

A Study on the Shielding Element Using Monte Carlo Simulation (몬테카를로 시뮬레이션을 이용한 차폐체 원소 평가)

  • Kim, Ki-Jeong;Shim, Jae-Goo
    • Journal of radiological science and technology
    • /
    • v.40 no.2
    • /
    • pp.269-274
    • /
    • 2017
  • In this research, we simulated the elementary star shielding ability using Monte Carlo simulation to apply medical radiation shielding sheet which can replace existing lead. In the selection of elements, mainly elements and metal elements having a large atomic number, which are known to have high shielding performance, recently, various composite materials have improved shielding performance, so that weight reduction, processability, In consideration of activity etc., 21 elements were selected. The simulation tools were utilized Monte Carlo method. As a result of simulating the shielding performance by each element, it was estimated that the shielding ratio is the highest at 98.82% and 98.44% for tungsten and gold.

Structural Optimization for LMTT-Mover Using the Kriging Based Approximation Model (크리깅 근사모델 모델을 이용한 LMTT 이동체의 구조최적설계)

  • Lee, Kwon-Hee;Park, Hyung-Wook;Han, Dong-Seop;Han, Geun-Jo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.29 no.1
    • /
    • pp.385-390
    • /
    • 2005
  • LMTT (Linear Motor-based Transfer Techn-ology) is a horizontal transfer system for the yard automation, which has been proposed to take the place of AGV (Automated Guided Vehicle) in the maritime container terminal. The system is based on PLMSL (Permanent Magnetic Linear Synchronous Motor) that consists of stator modules on the rail and shuttle car. It is desirable to reduce the weight of LMTT in order to control the electronic devices with minimum energy. In this research, the DACE modeling, known as the one of Kriging interpolation, is introduced to obtain the surrogate approximation model of the structural responses. Then, the GRG(Generalized Reduced Gradient) method built in Excel is adopted to determine the optimum. The objective function is set up as weight. On the contrary, the design variables are considered as transverse, longitudinal and wheel beam's thicknesses, and the constraints are the maximum stresses generated by four loading conditions.

  • PDF

The Design of Elliptic Function Bandpass Filter using Ceramic Coaxial Resonators (유전체 동축 공진기를 이용한 타원 함수 대역 통과 여파기의 설계)

  • 김정제;윤상원
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.6
    • /
    • pp.805-814
    • /
    • 1999
  • In this paper, elliptic function bandpass filters using ceramic coaxial resonators are designed. Since elliptic function filters have better performance of frequency selectivity than those based on Butterworth or Chebyshev, therefore it is possible to make better use of limited frequency resources. Elliptic function bandpass filters using ceramic coaxial resonators are designed for reducing it's size, weight, cost and for easy manufacturing and tuning. From measurements, an accurate resonator model is obtained and the coupling coefficient values are extracted. Based on these results, elliptic function bandpass filters are designed. The experimental results have shown that the 8th order elliptic function filter of 959 MHz center frequency with 28 MHz bandwidth using coaxial ceramic resonators have about more tan 17 dB return loss, 5 dB insertion loss, more than 20 dB attenuation at $f_c\pm$5 MHz.

  • PDF

Kinematic Optimization and Experiment on Power Train for Flapping Wing Micro Air Vehicle (날갯짓 초소형 비행체의 끈을 이용한 동력 전달 장치에 대한 기구학적 최적화 및 실험)

  • Gong, Du-Hyun;Shin, Sang-Joon;Kim, Sang-Yong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.4
    • /
    • pp.289-296
    • /
    • 2017
  • In this paper, geometrical optimization for newly designed flapping mechanism for insect-like micro air vehicle is presented. The mechanism uses strings to convert rotation of motor to reciprocating wing motion to reduce the total weight and inertial force. The governing algorithm of movement of the mechanism is established considering the characteristic of string that only tensile force can be acted by string, to optimize the kinematics. Modified pattern search method which is complemented to avoid converging into local optimum is adopted to the geometrical optimization of the mechanism. Then, prototype of the optimized geometry is produced and experimented to check the feasibility of the mechanism and the optimization method. The results from optimization and experiment shows good agreement in flapping amplitude and other wing kinematics. Further research will be conducted on dynamic analysis of the mechanism and detailed specification of the prototype.

Analysis on Thermal Structural Characteristics of Thermal Protection System Panel for a High-speed Vehicle (초고속 비행체 열방어 시스템 패널의 열구조 특성 분석)

  • Lee, Heesoo;Kim, Yongha;Park, Jungsun;Goo, Namseo;Kim, Jaeyoung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.942-944
    • /
    • 2017
  • High-speed vehicles are subjected to complex loads, such as acoustic pressure from the engine at launch and aerodynamic heating and aerodynamic pressure during flight. A thermal protection system panel is required to protect internal systems such as the fuel tank of the vehicle from the external environment. This study defines analytical models for heat transfer and thermal structure characteristics of the thermal protection system panel. Furthermore, the study performed parameters analysis to achieve the thermal structural integrity and to make it lighter.

  • PDF

Structural Optimization for LMTT-mover of a Crane (크레인 LMTT용 이동체의 구조최적설계)

  • Lee K.-H.;Min K. A.;PARK H. W.;Han D. S.;Han G. J.
    • Journal of Navigation and Port Research
    • /
    • v.29 no.5 s.101
    • /
    • pp.415-420
    • /
    • 2005
  • LMTT (Linear Motor-based Transfer Technology) is the horizontal transfer system for yard automation, which has been proposed to take the place of AGV (Automated Guided Vehicle) in the maritime container terminal. The system is based on PMLSM (Permanent Magnetic Linear Synchronous Motor) that consists of stator modules on the rail and shuttle car. It is desirable to reduce the weight of LMTT in order to control the electronic devices with minimum energy. In this research, structural optimization for a mover of shuttle car is performed to minimize the weight satisfying design criteria. The objective function is set up as weight. On the contrary, the design variables are transverse, longitudinal and wheel beams' thicknesses and its height, and the constraints are considered as strength and stiffness.

Montgomery Multiplier Supporting Dual-Field Modular Multiplication (듀얼 필드 모듈러 곱셈을 지원하는 몽고메리 곱셈기)

  • Kim, Dong-Seong;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.6
    • /
    • pp.736-743
    • /
    • 2020
  • Modular multiplication is one of the most important arithmetic operations in public-key cryptography such as elliptic curve cryptography (ECC) and RSA, and the performance of modular multiplier is a key factor influencing the performance of public-key cryptographic hardware. An efficient hardware implementation of word-based Montgomery modular multiplication algorithm is described in this paper. Our modular multiplier was designed to support eleven field sizes for prime field GF(p) and binary field GF(2k) as defined by SEC2 standard for ECC, making it suitable for lightweight hardware implementations of ECC processors. The proposed architecture employs pipeline scheme between the partial product generation and addition operation and the modular reduction operation to reduce the clock cycles required to compute modular multiplication by 50%. The hardware operation of our modular multiplier was demonstrated by FPGA verification. When synthesized with a 65-nm CMOS cell library, it was realized with 33,635 gate equivalents, and the maximum operating clock frequency was estimated at 147 MHz.

Systematic Design Approach Based on Cavity-Mode Resonance Analysis for Radiated Susceptibility of Cables in Air Vehicles (캐비티 공진 해석 기반 비행체 내부배선 복사내성 대책 설계 방안)

  • Minseong Kang;Yangwon Kim;Donggyu Roh;Myunghoi Kim
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.5
    • /
    • pp.587-593
    • /
    • 2023
  • In this paper, we propose a systematic design approach based on cavity-mode resonance analysis to improve the radiated susceptibility of cables in air vehicles. As electronic devices equipped in air vehicles substantially increase, enhancing the radiated susceptibility of internal cables becomes more challenging and significant. The proposed design approach provides an efficient method to avoid and suppress cavity-mode resonances using analytical methods to estimate the resonance frequencies and the current ratio induced by the cavity-mode resonances. It is demonstrated in simulated results that the proposed method offers a design solution for improving the radiated susceptibility and reduces the computation time by up to 99.6% compared to the previous design method.

Structural Performance and Usability of Void Slab Established in T-deck Plate (T형 데크 플레이트 중공형 슬래브의 구조성능 및 사용성능)

  • Hong, Eun-Ae;Chung, Lan;Paik, In-Kwan;Yun, Sung-Ho;Cho, Seung-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.6
    • /
    • pp.677-684
    • /
    • 2012
  • In recent years, extension of life span of buildings is becoming an important issue in our society. To improve the life span of buildings, rhamen structure construction and long-spanned structures are advantageous. And in order to achieve this goal, structural elements of buildings must be light and slender. As an alternative method, general porous slabs are used frequently domestically and internationally. But the study on the porous slabs using T-deck plate and assembly of light weight precast construction is insufficient at present. In this study, flexural and fatigue tests were performed on six specimens to verify structural performance and serviceability. The main parameters of the specimens were light weight and T-deck plate construction possibility as well as slab thickness. The test results indicated that the strength of porous slabs using T-deck plate and assembly of light weight were much better than general RC slabs and porous slabs without T-deck plate. And stiffness was much better than that of other tested slabs.

Manufacturing of Artificial Lightweight Aggregates using a Coal Fly Ash Discharged from Fluidized Bed Combustor (유동층(流動層) 연소기(撚燒器)로 부터 발생(發生)된 석탄(石炭) 비산(飛散)재를 이용(利用)한 인공경량골재(人工輕量骨材) 제조(製造))

  • Kang, Min-A;Kang, Seung-Gu
    • Resources Recycling
    • /
    • v.20 no.1
    • /
    • pp.54-60
    • /
    • 2011
  • The spherical artificial aggregates (AAs) with a diameter of 8 mm, which contains fly ashes discharged from the fluidized bed combustion in a thermal power plant and clay were manufactured by direct sintering method at $1050{\sim}1250^{\circ}C$ for 10 minutes. The effect of fly ash contents on the bloating phenomenon in the AAs was analyzed. The AAs containing fly ash of the amount under 50 wt% showed the black-coring and bloating phenomena. The AAs containing fly ash of the amount over 5Owt%, however, the specific gravity was increased and the color of specimens fully changed to black. These color change phenomena were caused from the formation of FeO by the reduction reaction of almost $Fe_2O_3$ component by the excessive reducing atmosphere formed simultaneously with the rapid emission of the gases generated from the high contents of unburned carbon of with increasing the added fly ash amount. Specific gravity was decreased as fly ash contents increased in the case of sintering at the same temperature condition. Water absorption of all specimens except of the specimens containing 10 wt% fly ashes decreased with increasing sintering temperature. These were because a liquid phase was formed as the increasing the sintering temperature. In the case of the specimens manufactured in this study containing fly ashes discharged from the fluidized bed combustor in a the thermal power plant and 10~90 wt% of clay, the specific gravity was 0.9~1.8 and the water absorptivity was 8~60%, therefore it is considered that those results can be applied to the light or heavy aggregates.