• Title/Summary/Keyword: 경동맥 분기부

Search Result 4, Processing Time 0.019 seconds

Influence of Inlet Secondary Curvature on Hemodynamics in Subject-Specific Model of Carotid Bifurcations (환자 특정 경동맥 분기부 모델 혈류유동에 대한 입구부 이차곡률의 영향)

  • Lee, Sang-Wook
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.5
    • /
    • pp.479-486
    • /
    • 2011
  • In image-based CFD modeling of carotid bifurcation hemodynamics, it is often not possible (or at least not convenient) to impose measured velocity profiles at the common carotid artery inlet. Instead, fully-developed velocity profiles are usually imposed based on measured flow rates. However, some studies reported a pronounced influence of inflow boundary conditions that were based on actual velocity profiles measured by magnetic resonance imaging which showing the unusual presence of a high velocity band in the middle of the vessel during early diastole inconsistent with a Dean-type velocity profile. We demonstrated that those velocity profiles were induced by the presence of modest secondary curvature of the inlet and set about to test whether such more "realistic" velocity profiles might indeed have a more pronounced influence on the carotid bifurcation hemodynamics. We found that inlet boundary condition with axisymmetric fully-developed velocity profile(Womersley flow) is reasonable as long as sufficient CCA inlet length of realistic geometry is applied.

NUMERICAL ANALYSIS OF BLOOD FLOW DYNAMICS AND WALL MECHANICS IN A COMPLIANT CAROTID BIFURCATION MODEL (혈관 유연성을 고려한 경동맥 분기부 모델 혈류역학 해석)

  • Nguyen, T.M.;Lee, S.W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.500-503
    • /
    • 2011
  • Blood flow simulations in an idealized carotid bifurcation model with considering wall compliance were carried out to investigate the effect of wall elasticity on the wall shear stress and wall solid stress. Canonical waveforms of flowrates and pressure in the carotid arteries were imposed for the boundary conditions. Comparing to rigid wall model, generally, we could find an increased recirculation region at the carotid bulb and an overall reduced wall shear stress. Also, there was appreciable change of flowrate and pressure waveform in longitudinal direction. Solid and wall shear stress concentration occurs at the bifurcation apex.

  • PDF

Numerical Study on Blood Flow Dynamics and Wall Mechanics in a Compliant Carotid Bifurcation Model (혈관 유연성을 고려한 경동맥 분기부 모델 혈류역학 해석)

  • Nguyen, Minh Tuan;Lee, Sang-Wook
    • Journal of the Korean Society of Visualization
    • /
    • v.13 no.2
    • /
    • pp.28-32
    • /
    • 2015
  • Blood flow simulations in an realistic carotid bifurcation model with considering wall compliance were carried out to investigate the effect of wall elasticity on the wall shear stress and wall solid stress. Canonical waveforms of flow rates and pressure in carotid arteries were imposed for boundary conditions. Compared to a rigid wall model, we found an increased recirculation region at the carotid bulb and an overall reduction of wall shear stress in a compliant model. Additionally, there was appreciable change of flow rate and pressure wave in longitudinal direction. Both solid and wall shear stress concentration occur at the bifurcation apex.

Clinical Utility of Turbo Contrase-Enhanced MR Angiography for the Major Branches of the Aortic Arch (대동맥궁 주요 분지들의 고속 조영증강 자기공명혈관조영술의 임상적 유용성)

  • Su Ok Seong
    • Investigative Magnetic Resonance Imaging
    • /
    • v.2 no.1
    • /
    • pp.96-103
    • /
    • 1998
  • Purpose : To assess the clinical utility of turbo contrast-enhanced magnetic resonance angiography(CE MRA) in the evaluation of the aortic arch and its major branches and to compare the image quality of CE MRA among different coils used. Materials and Methods : Turbo three-phase dynamic CE MRA encompassing aortic arch and its major branches was prospectively performed after manual bolus IV injection of contrast material in 29 patients with suspected cerebrovascular diseases at 1.0T MR unit. the raw data were obtained with 3-D FISH sequence (TR 5.4ms, TE 2.3ms, flip angle 30, slab thickness 80nm, effective slice thickness 4.0mm, matrix size $100{\times}256$, FOV 280mm). Total data acquisition time was 4. to 60 seconds. We subjectively evaluated the imge quality with three-rating scheme : "good" for unequivocal normal finding, "fair" for relatively satisfactory quality to diagnose 'normal' despite intravascular low signal, and "poor" for equivocal diagnosis or non-visualization of the origin or segment of the vessels due to low signal or artifacts which needs catheter angiography. At the level of the carotid bifurcation, it was compared with conventional 2D-TOF MRA image. Overall image quality was also compared visually and quantitatively by measuring signal-to-noise ratios (SNRs) of the ascending aorta, the innominate artery and both common carotid arteries among the three different coils used(CP body array(n=12), CP neck array(n=9), and head-and-neck(n=8). Results : Demonstration of the aortic arch and its major branches was rated as "good" in 55% (16/29) and "fair" in 34%(10/29). At the level of the carotid bifurcation, image quality of turbo CE MRA was same as or better than conventional 2D-TOF MRA in 65% (17/26). Overall image quality and SNR were significantlygreater with CP body array coil than with CP neck array or head-and-neck coil. Conclusions : Turbo CE MRA can be used as a screening exam in the evaluation of the major branches of the aortic arch from their origin to the skull base. Overall imagequality appears to be better with CP body array coil than with CP neck array coil or head-and-neck coil.

  • PDF