• Title/Summary/Keyword: 경계 기둥

Search Result 51, Processing Time 0.023 seconds

Study on Efficient Collision Detection in Virtual Environment Navigation System (가상 환경 탐험 시스템 상에서 효과적인 충돌 탐지에 관한 연구)

  • Park, Nam-Il;Kim, Dong-Hoon;Lee, Sang-Rak;Sung, Mee-Young;Park, Jong-Seung
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.613-618
    • /
    • 2006
  • 본 논문은 3차원 가상 환경을 탐험하는데 있어서 빠르고 효과적으로 충돌 탐지를 검출하는 방법을 제안하고자 한다. 넓은 가상 공간상에서 개체가 증가하는 것에 비례하여 충돌 탐지의 계산 비용은 기하 급수적으로 증가한다. 이를 효과적으로 처리하기 위하여 BSP-tree 분할 방식과 경계 기둥을 사용한다. BSP-tree 분할 방식은 3차원의 넓은 가상 공간을 여러 하위 공간으로 나누어 충돌 탐지가 이루어지는 공간을 축소한다. 이를 통하여 충돌 탐지 개체의 수가 증가하는 것에 따라 기하 급수적으로 증가하는 경계 기둥의 충돌 탐지 비용을 줄이는 효과를 얻을 수 있다. 경계 기둥은 축소된 하위 공간 상에서 개체간 실제 충돌 탐지가 일어날 가능성 및 충돌 여부를 빠르고 간편하게 판별하도록 한다.

  • PDF

An Analytical Study on the Lateral Behavior of RC Columns Strengthened with CFRP (탄소섬유시트로 보강된 RC 기둥의 횡방향 거동에 관한 해석적 연구)

  • Kim, Ki-Beom;Nam, Sang-Hyeok;Song, Ha-Won
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.189-190
    • /
    • 2009
  • This paper studies the lateral response of reinforced concrete columns strengthened with carbon fiber reinforced polymer sheet (CFRP) subjected to static loading analytically by comparing with experimental results. For interface behavior between RC columns and CFRP, and interface element in FEM was applied and verified its performance by analyzing lateral behavior of RC columns strengthened with CFRP. The comparison shows that the proposed analytical method is effective for nonlinear analysis of RC columns strengthened CFRP.

  • PDF

An Analytic Study on Structural Stability according to Boundary Conditions and H-section Column Lengths Made of An Ordinary Grade Structural Steels (SS 400) at High Temperatures (일반구조용 강재(SS 400)기둥부재의 경계조건과 부재 길이변화에 따른 고온 내력의 해석적 연구)

  • Kwon, In-Kyu
    • Fire Science and Engineering
    • /
    • v.28 no.1
    • /
    • pp.20-25
    • /
    • 2014
  • Steel column is very important an structural element in steel framed building and plays a key role in sustataining the applied external load. Generally, the fire resistance performance of steel column has been executed by application of fire standard and vertical furnace having a limitation in height. Therefore, the fire resistance test was conducted with a H-section column having 3500 mm in length and hinge to hinge boundary condition. And the fire protective material derived from the fire test can be applied to any kind of boundary conditions and lengths. However, it is hard to determine the fire resistance. In this paper, to make sure the structural stability of them at high temperature according to various boundary conditions and lengths of H-section column, an analysis was done by using the mechanical properties and an heat transfer theory.

Static and Dynamic Stability Analyses of Simple Tapered Columns with Constant Volume (일정체적 단순지지 변단면 기둥의 정·동적 안정해석)

  • Lee, Byoung Koo;Kim, Suk Ki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3A
    • /
    • pp.533-538
    • /
    • 2006
  • This study deals with the static and dynamic stability analyses of simple tapered columns with constant volume. The crosssections of column taper are the regular polygons whose depths are varied with the parabolic functional fashion. The hingedhinged end constraint is chosen as the boundary condition of the column. The non-dimensional ordinary differential equation governing free vibrations of such column subjected to an axial load is derived and solved numerically. From numerical results, the relationships between natural frequencies and section ratios are obtained, from which the configurations of dynamic optimal shapes of columns and the strongest columns are extracted.

An Experimental Study on the Fire Behavior of CFT Column under the Constant Axial Loading Condition in Fire (일정축력을 받는 콘크리트 충전 각형기둥의 경계조건 변화에 따른 화재거동특성에 관한 실험적 연구)

  • Kim, Hyung-Jun;Kim, Heung-Youl;Min, Byung-Youl;Kwon, In-Kyu;Kwon, Ki-Hyuk
    • Fire Science and Engineering
    • /
    • v.24 no.6
    • /
    • pp.69-75
    • /
    • 2010
  • A concrete filled square steel tube (CFT) is composed of the external steel material, which its strength is reduced in fire due to sudden temperature increase, and the internal concrete with high thermal capacity that can ensure the fire resistance performance of the structure. Therefore, research about the influence factors of the structural performance of CFT column is required in order to apply CFT column to a fire resisting structure, and additional research about influence for each condition is also necessary. Among the influence factors, the boundary condition between column and beam is important structurally, and it is one of the major factors that determine overall fire resisting performance. This study performed a fire experiment under loading in order to analyse the influences of CFT column to the boundary condition. As the results of the experiment, fire resistance time of 106 minutes was ensured for the clamped-end condition but 89 minutes for the hinge-end condition in case of the 360 cross section. And, fire resistance time of 113 minutes was ensured for the clamped-end condition but 78 minutes for the hinge-end condition in case of the 280 cross section.

Elastica of Cantilever Column with Constant Volume Subjected to Combined Loads (조합하중을 받는 일정체적 캔틸레버 기둥의 정확탄성곡선)

  • Lee, Byoung-Koo;Li, Guangfan;Yoon, Hee-Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.5
    • /
    • pp.581-592
    • /
    • 2007
  • This paper deals with the elastica of deflected cantilever column with the constant volume. The columns are subjected to combined loads consisted of an axial compressive load and a couple moment at the free end. Differential equations governing the elastica of such column are derived, in which both the effects of taper type and shear deformation are included. Three kinds of taper types are considered: linear, parabolic and sinusoidal tapers. Differential equations are solved numerically to obtain the elastica of objective columns. The effects of various system parameters on the elastica are investigated extensively. Experimental studies were carried out in order to verify the theoretical results of non-linear behavior of the elasticas.

Critical Loads of Tapered Beck's Columns with Clamped and Spring Supports (일단고정 타단스프링으로 지지된 변단면 Beck 기둥의 임계하중)

  • Kim Suk-Ki;Park Kwang-Kyou;Lee Byoung-Koo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.1 s.71
    • /
    • pp.85-92
    • /
    • 2006
  • This paper investigates critical loads of the tapered Beck's columns with clamped and spring supports, subjected to a subtangential follower force. The linearly tapered columns with the solid rectangular cross-section is adopted as the column taper. The differential equation governing free vibrations of such Beck's columns is derived using the Bemoulli-Euler beam theory. Both divergence and flutter critical loads are calculated from the load-frequency curves which are obtained by solving the differential equation. The critical loads are presented as functions of various non-dimensional system parameters: the taper type, the subtangential parameter and the spring stiffness.

Finite Element Analysis of the Reinforced Concrete Boundary-Beam-Wall System Subjected to Axial Load (축하중이 작용하는 RC 경계보-벽체 시스템의 해석적 평가)

  • Son, Hong-Jun;Kim, Seung-Il;Kim, Dae-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.2
    • /
    • pp.93-100
    • /
    • 2021
  • In Korea, one of the most used structural systems for residential apartment buildings is the combination of the reinforced concrete (RC) wall and rahmen structures in the upper and lower floors, respectively. To alleviate the significant difference between the stiffnesses of these two structural systems, large transfer girders are generally required in the transition zone of the structure, which then results in the use of large amounts of construction materials and low economic feasibility. This paper proposes a new RC boundary-beam-wall system that can minimize the disadvantages of the RC transfer girder system. The structural performance of the proposed system subjected to axial loading was evaluated via rigorous three-dimensional nonlinear finite element analysis. Four parameters, namely the ratio of lower wall to upper wall lengths, distance between stirrups, main bar slope ratio, and slab length, were considered in the finite element analysis, and their effects on the maximum axial load were analyzed and discussed.

The Expressions of Vector Gravity and Gravity Gradient Tensor due to an Elliptical Cylinder (타원 기둥에 의한 벡터 중력 및 중력 변화율 텐서 반응식)

  • Hyoungrea Rim
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • This study derives the expressions of vector gravity and gravity gradient tensor due to an elliptical cylinder. The vector gravity for an arbitrary three-dimensional (3D) body is obtained by differentiating the gravitational potential, including the triple integral, according to the shape of the body in each axis direction. The vector gravity of the 3D body with axial symmetry is integrated along the axial direction and reduced to a double integral. The complex Green's theorem using complex conjugates subsequently converts the double integral into a one-dimensional (1D) closed-line integral. Finally, the vector gravity due to the elliptical cylinder is derived using 1D numerical integration by parameterizing a boundary of the elliptical cross-section as a closed line. Similarly, the gravity gradient tensor due to the elliptical cylinder is second-order differentiated from the gravitational potential, including the triple integral, and integrated along the vertical axis direction reducing it to a double integral. Consequently, all the components of the gravity gradient tensor due to an elliptical cylinder are derived using complex Green's theorem as used in the case of vector gravity.