• Title/Summary/Keyword: 경계층 보정

Search Result 45, Processing Time 0.028 seconds

지하수 모델의 주요 수문 요소에 대한 민감도 분석 사례 연구

  • Na Han-Na;Gu Min-Ho;Cha Jang-Hwan;Kim Yong-Je
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.59-63
    • /
    • 2006
  • 지하수 모델 개발은 모델의 목적 설정, 자료수집, 개념모델의 수립, 모델 설계, 모델 보정 및 민감도 분석, 예측, 결과제시, 사후검사의 순으로 수행된다. 본 연구의 목표는 신뢰성 있는 지하수 모델 개발을 위해 주요 수문요소(hydraulic features)들을 개념화하는 단계에서 부딪히게 되는 문제점들을 국내의 지하수 환경에 비추어 고찰하였고, 하천 및 지하수 분수령에 대한 경계조건 설정, 암반층의 하부 경계면 설정 등과 같은 수문요소들이 내포하는 불확실성을 논의하였다. 또한 시범지역의 지하수 모델에 대한 민감도 분석을 통하여 이들이 모델 결과에 미치는 영향을 정량적으로 제시하였다.

  • PDF

A study on the determination of substrata using the information of exponential response rate by simulation studies (모의실험을 기반으로 지수형 응답률 보정을 위한 세부 층 결정에 관한 연구)

  • Min, Joo-Won;Shin, Key-Il
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.5
    • /
    • pp.621-636
    • /
    • 2018
  • Research on the application of informative sampling technique has been conducted in order to reduce the influence of non-response. Chung and Shin (Korean Journal of Applied Statistics, 30, 993-1004, 2017) showed that the estimation accuracy improved when using exponential response rate information for the parameter estimation if the distribution of errors included in the super population model follows normal distribution. However this method divides the stratum into equally spaced substrata to obtain the sample weight of the informative sampling technique and shows that the accuracy of the estimation improves as the number of substrata increases. In this study, with the given number of total sample size, the optimal substratum boundary points are calculated using equal space, quantile, and LH algorithm; consequently, the results using those methods are compared through simulation. We also studied the criteria to determine the number of substrata and substratum boundaries that can be used in practice with various types of auxiliary variable distributions.

Sensitivity Analysis of Groundwater Model Predictions Associated with Uncertainty of Boundary Conditions: A Case Study (지하수 모델의 주요 경계조건에 대한 민감도 분석 사례)

  • Na, Han-Na;Koo, Min-Ho;Cha, Jang-Hawn;Kim, Yong-Je
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.3
    • /
    • pp.53-65
    • /
    • 2007
  • Appropriate representation of hydrologic boundaries in groundwater models is critical to the development of a reliable model. This paper examines how the model predictions are affected by the uncertainty in the conceptualization of the hydrologic boundaries including groundwater divides, streams, and the lower boundaries of the flow system. The problem is analyzed for a study area where a number of field data for model inputs were available. First, a groundwater flow model is constructed and calibrated for the area using the Visual Modflow code. Recharge rate is used for the unknown variable determined through the calibration process. Secondly, a series of sensitivity analyses are conducted to evaluate the effects of model uncertainties embedded in specifying boundary conditions for streams and groundwater divides and specifying lower boundary of the bedrock. Finally, this paper provides some guidelines and discussions on how to deal with such hydrologic boundaries in view of developing a reliable conceptual model for the groundwater flow system of Korea.

Improvement of Reverse-time Migration using Homogenization of Acoustic Impedance (음향 임피던스 균질화를 이용한 거꿀시간 참반사보정 성능개선)

  • Lee, Gang Hoon;Pyun, Sukjoon;Park, Yunhui;Cheong, Snons
    • Geophysics and Geophysical Exploration
    • /
    • v.19 no.2
    • /
    • pp.76-83
    • /
    • 2016
  • Migration image can be distorted due to reflected waves in the source and receiver wavefields when discontinuities of input velocity model exist in seismic imaging. To remove reflected waves coming from layer interfaces, it is a common practice to smooth the velocity model for migration. If the velocity model is smoothed, however, the subsurface image can be distorted because the velocity changes around interfaces. In this paper, we attempt to minimize the distortion by reducing reflection energy in the source and receiver wavefields through acoustic impedance homogenization. To make acoustic impedance constant, we define fake density model and use it for migration. When the acoustic impedance is constant over all layers, the reflection coefficient at normal incidence becomes zero and the minimized reflection energy results in the improvement of migration result. To verify our algorithm, we implement the reverse-time migration using cell-based finite-difference method. Through numerical examples, we can note that the migration image is improved at the layer interfaces with high velocity contrast, and it shows the marked improvement particularly in the shallow part.

General Steady-State Shape Factors in Analyzing Slug Test Results to Evaluate In-situ Hydraulic Conductivity of Vertical Cutoff Wall (순간변위시험(slug test)시 연직차수벽의 현장투수계수를 산정하기 위한 형상계수 연구)

  • Lim, Jee-Hee;Lee, Dong-Seop;Nguyen, Thebao;Choi, Hang-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.10
    • /
    • pp.105-116
    • /
    • 2011
  • No analytical solution exists for evaluating in-situ hydraulic conductivity of vertical cutoff walls by analyzing slug test results. Recently, an analytical solution to interpret slug tests has been proposed for a partially penetrated well in an aquifer. However, this analytical solution cannot be directly applied to the cutoff wall because the solution has been developed exclusively for an infinite aquifer instead of a narrow cutoff wall. To consider the cutoff wall boundary conditions, the analytical solution has been modified in this study to take into account the narrow boundaries by introducing the imaginary well theory. Two boundary conditions are considered according to the existence of filter cakes: constant head boundary and no flux boundary. Generalized steady-state shape factors are presented for each geometric condition, which can be used for evaluating the in-situ hydraulic conductivity of cutoff walls. The constant head boundary condition provides higher shape factors and no flux boundary condition provides lower shape factors than the infinite aquifer, which enables to adjust the in-situ hydraulic conductivity of the cutoff wall. The hydraulic conductivities calculated from the analytical solution in this paper give about 1.2~1.7 times higher than those from the Bouwer and Rice method, one of the semi-empirical formulas. Considering the compressibility of the backfill material, the analytical solution developed in this study was proved to correspond to the case of incompressible backfill materials.

Improved Glare Region Modeling using Super Pixel (슈퍼픽셀을 이용한 향상된 빛 번짐 영역 모델링)

  • Cho, Chil-Suk;Park, Jong-Il
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2013.06a
    • /
    • pp.319-321
    • /
    • 2013
  • 야간 영상에서 쉽게 발생하는 빛 번짐은 영상 내에 존재하는 색상 정보나 경계선과 같은 컴퓨터 비전에서 중요한 정보들에 대해 영향을 끼친다. 때문에 이를 효과적으로 이용하기 위해서는 빛 번짐 영역을 없애주는 보정단계가 필요하다. 보정하기 위해서는 먼저 그 빛 번짐 영역을 정확하게 찾아내는 것이 중요하다. 본 논문에서는 다층구조를 이용하여 얻어진 빛 번짐 영역을 더욱 정확하게 모델링 할 수 있는 방법을 제안한다. 제안하는 방법은 슈퍼픽셀을 이용하여 빛 번짐 영역 모델링의 정확도를 향상시킨다. 제안한 방법에 의하면 층 구조를 이용하면서 발생되는 문제점인 영상 밝기 정보에만 의존하여 잘못된 영역을 포함시키거나 누락시켰던 문제점을 해결하였다.

  • PDF

The Prediction of Air Flow and Pressure Loss at Inlet Duct (입구덕트 공기유량 및 압력손실 예측방법)

  • Lee, Bo-Hwa;Lee, Kyung-Jae;Yang, Soo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.1
    • /
    • pp.48-55
    • /
    • 2010
  • The purpose of this paper was to address the methodology of the air flow measurement using duct mach number that was considered area-weighed average obtained by total, static pressure and temperature measured at engine inlet duct. Without installing boundary rake, the prediction of air flow measurement was discussed. Actual air flow measurement and pressure value using pressure loss through inlet seal were described to improve the reliability and operability of altitude engine test facility.

The Air Flow Measurement and Prediction of Pressure Loss at Engine Inlet Duct (엔진 입구 덕트에서 공기유량 측정 및 압력손실 예측방법)

  • Lee, Bo-Hwa;Yang, In-Young;Yang, Soo-Seok
    • Aerospace Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.29-34
    • /
    • 2007
  • The purpose of this paper was to address the methodology of the air flow measurement using duct mach number that was considered area-weighed average obtained by total pressure and temperature measured at engine inlet duct. Without installing boundary rake, the prediction of air flow measurement was discussed. Actual air flow measurement and pressure value using pressure loss through inlet seal were described to improve the reliability and operability of altitude engine test facility.

  • PDF

Prestack Reverse Time Migration for Seismic Reflection data in Block 5, Jeju Basin (제주분지 제 5광구 탄성파자료의 중합전 역시간 구조보정)

  • Ko, Chin-Surk;Jang, Seong-Hyung
    • Economic and Environmental Geology
    • /
    • v.43 no.4
    • /
    • pp.349-358
    • /
    • 2010
  • For imaging complex subsurface structures such as salt dome, faults, thrust belt, and folds, seismic prestack reverse-time migration in depth domain is widely used, which is performed by the cross-correlation of shot-domain wavefield extrapolation with receiver-domain wavefield extrapolation. We apply the prestack reverse-time migration, which had been developed at KIGAM, to the seismic field data set of Block 5 in Jeju basin of Korea continental shelf in order to improve subsurface syncline stratigraphy image of the deep structures under the shot point 8km at the surface. We performed basic data processing for improving S/N ratio in the shot gathers, and constructed a velocity model from stack velocity which was calculated by the iterative velocity spectrum. The syncline structure of the stack image appears as disconnected interfaces due to the diffractions, but the result of the prestack migration shows that the syncline image is improved as seismic energy is concentrated on the geological interfaces.

Three-dimensional Seismic Refraction Travel Time Tomography for Dipping Two Layers (경사 2층 구조를 위한 3차원 굴절탄성파 주시 토모그래피)

  • Cho Dong-heng;Cho Kwang-ho
    • Geophysics and Geophysical Exploration
    • /
    • v.1 no.1
    • /
    • pp.19-24
    • /
    • 1998
  • This paper deals with tomographic travel time inversion of three dimensional seismic refraction survey conducted over a dipping interface. The slowness, and thus velocity as its reciprocal, distribution on the subsurface interface is to be determined applying an ART with under-relaxtion parameter. The models chosen are realistic, i.e., most likely to be met in engineering seismics, and the interface includes anomalous zones. It is found that, generally speaking, the inversion could be misleading or meaningless without the correction of the dip of the interface. This is rather surprising when we recall that usual assumption for the interpretation of refraction seismics data is the horizontal attitude of structures within the limit of $15^{\circ}$ dip or so. To make the present method tenable for a new means of routine seismics, some practical ways of identifying head wave arrivals are to be devised.

  • PDF