• Title/Summary/Keyword: 경계에너지

Search Result 629, Processing Time 0.023 seconds

Feasibility Study on the Gas-Liquid Multiphase by Lattice-Boltzmann Method in Two-Dimensions (Lattice-Boltzmann Method를 이용한 2차원 기체-액체간 거동 기초 연구)

  • Jung, Rho-Taek
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.2
    • /
    • pp.111-119
    • /
    • 2016
  • Gas-Liquid multiphase flow simulation has been carried out using the Lattice boltzmann method. For the interface treatment, pseudo-potential model (Shan-Chen) was used with the Carnahan-Starling equation of state. Exact Difference Method also applied for the treatment of the force term. Through the developed code, we simulated coexsitence structure of high and low density, phase separation, surface tension effect, characteristics of moving interface, homogeneous and heterogeneous cavitation and bubble collaps.

Comparison of Genetic Algorithm and Simulated Annealing Optimization Technique to Minimize the Energy of Active Contour Model (유전자 알고리즘과 시뮬레이티드 어닐링을 이용한 활성외곽선모델의 에너지 최소화 기법 비교)

  • Park, Sun-Young;Park, Joo-Young;Kim, Myoung-Hee
    • Journal of the Korea Computer Graphics Society
    • /
    • v.4 no.1
    • /
    • pp.31-40
    • /
    • 1998
  • Active Contour Model(ACM) is an efficient method for segmenting an object. The main shortcoming of ACM is that its result is very dependent on the shape and location of an initial contour. To overcome this shortcoming, a new segmentation algorithm is proposed in this paper. The proposed algorithm uses B-splines to describe the active contour and applies Simulated Annealing (SA) and Genetic Algorithm(GA) as energy minimization techniques. We tried to overcome the initialization problem of traditional ACM and compared the result of ACM using GA and that using SA with 2D synthetic binary images. CT and MR images.

  • PDF

Wave Simulation for the Optimum Design of Jangjeon Harbour (장전항 최적 설계를 위한 정온도 해석)

  • Hong Keyyong;Yang Chankyu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.3 no.2
    • /
    • pp.49-59
    • /
    • 2000
  • Wave distribution in Jangjeon Harbour is numerically simulated for an optimum design of the harbour facilities. A deep-water design wave is estimated based on stochastic extreme wave analysis of wind data in the vicinity of the harbour, and it is applied to the boundary condition at open sea. Boussinesq wave theory that includes effects of frequency dispersion and nonlinearity is employed for the wave simulation. The porosity and sponge layer are adapted at beach to depict partial reflection and complete absorption of waves, respectively. The design wave for breakwater is computed in global domain with coarse grids and the wave distribution inside of wharf is simulated in local domain with fine grids.

  • PDF

Numerical Method Aimed at Multi-material Simulation of the Energetic Device (에너지 물질이 포함된 장치의 폭발 해석을 위한 다중물질 해석 방법)

  • Kim, Ki-Hong;Yoh, Jai-Ick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.274-278
    • /
    • 2011
  • We present an innovative method of multi-physics application involving energetic materials. We use an Eulerian methodology to address these problems. We have devised a new level set based tracking framework that can elegantly handle large gradients typically found in energetic response of high explosive and metals. Proper constitutive relations are employed to model the transient phases of gas, lliquid, and solid in the high strain rate regime. We use the confined and unconfined rate stick results to validate against the experimental data.

  • PDF

Symmetry of GaAsN Conduction-band Minimum: Resonant Raman Scattering Study (GaAsN 전도띠 바닥의 대칭성: 공명라만산란연구)

  • Seong M.J.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.2
    • /
    • pp.162-167
    • /
    • 2006
  • The symmetry of the conduction-band minimum of $GaAs_{1-x}N_{x}$ is probed by performing resonant Raman scattering (RRS) on thin layers of $GaAs_{1-x}N_{x}(x{\leq}0.7)$ epitaxially grown on Ge substrates. Strong resonance enhancement of the LO(longitudinal optical)-phonon Raman intensity is observed with excitation energies near the $E_0$ as well as $E_+$ transitions, However, in contrast to the distinct LO-phonon line-width resonance enhancement and activation of various X and L zone-boundary phonons brought about slightly below and near the $E_+$ transition, respectively, we have not observed any resonant LO-phonon line-width broadening or activation of sharp zone-boundary phonons near the $E_0$ transition. The observed RRS results reveal that the conduction-band minimum of GaAsN predominantly consists of the delocalized GaAs bulk-like states of ${\Gamma}$ symmetry.

Modeling on the Condensation of a Stable Steam Jet Discharging into a Quenching Tank (응축탱크로 방출되는 안정된 증기제트 응축모델)

  • 김환열;하광순;배윤영;박종균;최상민
    • Journal of Energy Engineering
    • /
    • v.10 no.4
    • /
    • pp.349-356
    • /
    • 2001
  • Phenomenon of direct contact condensation (DCC) heat transfer between steam and water is characterized by the transport of heat and mass through a moving steam/water interface. Since the DCC heat transfer provides some advantageous features in the viewpoint of enhanced heat transfer, it is widely applied to the diversified industries. This study proposes a simple condensation model on the stable steam jets discharging into a quenching tank with subcooled water from a single horizontal pipe for the prediction of the steam jet shapes. The model was derived from the mass, momentum and energy equations as well as thermal balance equation with condensing characteristics at the steam/water interface for the axi-symmetric coordinates. The extremely large heat transfer rate at the steam/water interface was reflected in the effective thermal conductivity estimated from the previous experimental results. The results were compared with the experimental ones. The predicted steam jet shape(i. e. radius and length) by the model was increasing as the steam mass flux and the pool temperature were increasing, which was similar to the trend observed in the experiment.

  • PDF

Energy Efficient Routing Protocol in Wireless Sensor Networks with Hole (홀이 있는 WSN 환경에서 에너지 효율적인 라우팅 프로토콜 )

  • Eung-Bum Kim;Tae-Wook Kwon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.5
    • /
    • pp.747-754
    • /
    • 2023
  • Energy-efficient routing protocol is an important task in a wireless sensor network that is used for monitoring and control by wirelessly collecting information obtained from sensor nodes deployed in various environments. Various routing techniques have been studied for this, but it is also necessary to consider WSN environments with specific situations and conditions. In particular, due to topographical characteristics or specific obstacles, a hole where sensor nodes are not deployed may exist in most WSN environments, which may result in inefficient routing or routing failures. In this case, the geographical routing-based hall bypass routing method using GPS functions will form the most efficient path, but sensors with GPS functions have the disadvantage of being expensive and consuming energy. Therefore, we would like to find the boundary node of the hole in a WSN environment with holes through minimal sensor function and propose hole bypass routing through boundary line formation.

A Numerical Study on the Leakage of a Liquid from an Underwater Pipe without Pressure Gradient (압력구배가 없는 수중 파이프에서의 액체 오염물 유출에 관한 수치연구)

  • Song Museok;Han Jahoon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.3 no.2
    • /
    • pp.18-24
    • /
    • 2000
  • A two-dimensional numerical method for inviscid two-fluid flows with a significant entrainment into both directions is established, and the oil leakage from a non-pressurized underwater pipe is studied. The interface between two fluids is modeled at a vortex sheet. The flow field and the subsequent interface evolution are solved by using the vortex-in-cell method. For longer flow simulation with a realistic two fluids interaction, an efficient merging scheme is introduced. In the Boussinesq limit, the speed of the external fluid intrusion into the pipe is very close to the existing mathematical models, and the lock exchange is observed in spite of a significant roll-up of the interface and entrainments. It is believed that the developed method can be utilized effectively for further detailed studies on various two-fluid flows which are encountered in many different marine oil spill problems.

  • PDF

Propagation of surface polaritons at the interface of metal and left-handed metamaterial (금속과 왼손잡이 메타-물질의 경계면에서 형성되는 표면 폴라리톤의 전파 특성)

  • 윤재웅;송석호;오차환;김필수
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.2
    • /
    • pp.89-99
    • /
    • 2004
  • At the interface of two materials with frequency-dependent material-parameters of permittivity and permeability, there may exist two kinds of surface polaritons: surface electric-polaritons(SEPs) and surface magnetic-polaritons(SMPs). Possible combinations of the material-parameters to support propagation of the two surface polaritons are suggested at the interface between metals and metamaterials such as a left-handed material. Dispersion relations are also derived in order to characterize frequency dependence of propagation of the SEP and SMP. It is found that only one propagation mode of SEP or SMP is allowed at a given set of four material parameters, and that counter-propagation of the phase and group velocities of the propagation mode can be observed even in the case when there are no double negative(or, negative-index) materials. Physical origin of the counter-propagation of the group velocity is proposed by evaluating the ratio of two electromagnetic-energy densities of a surface polariton propagating along within the two interface media, and it is confirmed by the dispersion relations.

Numerical Investigation on the Effect of Surface Tension Change of Liquefied $CO_2$ Droplets on their Ascending Speed (액화이산화탄소 유적의 수직 상승속도에 미치는 표면장력 변화의 영향에 대한 수치연구)

  • Cho, Yoon-Tae;Song, Mu-Seok
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.11 no.3
    • /
    • pp.160-163
    • /
    • 2008
  • $CO_2$ ocean sequestration is being considered as a way to earn a frame of time to change other industrial life pattern to overcome the global warming crisis. The method is to dilute the captured $CO_2$ into ocean by ejecting the liquefied $CO_2$ through nozzles. The main issue of such method is the effectiveness and safety, and in both problems the rising speed of those LCO2 droplet is the key parameter. In this paper, the rising speed of LCO2 droplets is numerically studied including the effect of the surfactant which can be residing along the density interface of the droplets. A front tracking method with a simple surface tension model is developed and the rising speed of the droplets is carefully investigated with varying the various parameters. It is demonstrated that the variable surface tension can change the deformation of the droplet, the flow near the interface, and the rising speed.

  • PDF