• Title/Summary/Keyword: 결합 모델

Search Result 2,881, Processing Time 0.026 seconds

기상-수문 결합 모델을 활용한 수문기상정보 산출기술 개발 연구

  • Ryu, Young;Ji, Hee-sook;Kim, Yoon-jin;Kim, Yeon-Hee;Kim, Baek-Jo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.238-238
    • /
    • 2016
  • 토양수분, 증발산량, 유출량 등의 고해상도 수문기상요소 산출을 위한 지면모델 활용 기술은 기상 및 수문분야에서 널리 활용 중에 있다. 본 연구에서는 미국 국립대기과학연구소(NCAR)에서 개발된 기상-수문 결합모델 WRF-Hydro(Weather Research and Forecasting Model Hydrological modeling extension package)을 활용하여 낙동강 유역에서 발생한 돌발홍수 사례 실험에 적용하여 강우량 및 수문기상요소 전체를 모의함으로써 기상-수문-지면 결합모델을 활용한 수문기상요소 산출하고자 하였다. 이를 기존의 기상모델로부터 입력강제자료를 제공받아 Off-line 형태로 결합된 지면모델(TOPLATS, TOPmodel-based Land Atmosphere Transfer Scheme) 결과와 비교하였고 기상-수문 결합모델의 국내 적용성을 검토하였다. 기상-수문-지면 결합모델(WRF-Hydro)의 초기장 및 경계장은 기상청 현업 모델에서 생성된 국지예보모델자료 1.5km 자료(LDAPS, Local Data Assimilation and Prediction System)를 사용하였으며, 모델의 적분기간은 돌발홍수 사례에 따라 24~36시간을 수행하였다. WRF-Hydro 모델의 물리모수화 방안은 작년까지 기상청에서 현업운영되는 KWRF의 방안들을 준용하였으며, WRF-Hydro 수행을 위해 Advanced Spaceborne Thermal Emission and Reflection Radiometer(ASTER)에서 제공되는 30 m 해상도의 수치표고자료를 GIS(Geographic Information System)를 활용하여 지표유출방향을 설정하였다.

  • PDF

Accuracy Evaluation of Alternative Concept Joint Models (결합부위 단순모델의 정확성 평가 방법의 개발)

  • Lee, Kwang Ju
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.1 s.38
    • /
    • pp.23-31
    • /
    • 1999
  • The concept models are used for the analysis of joints because they are simple to use and accurate. The modeling parameters of concept models are estimated using the results of experiments performed on the joints. The concept joint models accurately describe the behavior of joints under the loads which are used in the experiments for the estimation of parameters. However, they may not be accurate under the loads which are not used in the experiments. The accuracy can be dependent on the loads which are used in the evaluation of accuracy. In this study, antioptimization is presented to find the worst possible loads, under which the accuracy of concept joint models can be evaluated. The procedure was applied to the accuracy evaluation of concept joint models in an isolated 3-D joint and 2-D joints of a vehicle structure.

  • PDF

Feature Compensation Method Based on Parallel Combined Mixture Model (병렬 결합된 혼합 모델 기반의 특징 보상 기술)

  • 김우일;이흥규;권오일;고한석
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.7
    • /
    • pp.603-611
    • /
    • 2003
  • This paper proposes an effective feature compensation scheme based on speech model for achieving robust speech recognition. Conventional model-based method requires off-line training with noisy speech database and is not suitable for online adaptation. In the proposed scheme, we can relax the off-line training with noisy speech database by employing the parallel model combination technique for estimation of correction factors. Applying the model combination process over to the mixture model alone as opposed to entire HMM makes the online model combination possible. Exploiting the availability of noise model from off-line sources, we accomplish the online adaptation via MAP (Maximum A Posteriori) estimation. In addition, the online channel estimation procedure is induced within the proposed framework. For more efficient implementation, we propose a selective model combination which leads to reduction or the computational complexities. The representative experimental results indicate that the suggested algorithm is effective in realizing robust speech recognition under the combined adverse conditions of additive background noise and channel distortion.

Performance Improvement of data Mining by Input Data Discrimination (입력자료 판별에 의한 데이터 마이닝의 성능개선)

  • 이재식;이진천
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2000.04a
    • /
    • pp.293-303
    • /
    • 2000
  • 데이터 마이닝의 수행 예측 오차를 줄이기 위한 방법으로 하나의 문제를 여러 기법들을 결합하여 해결하고 있다. 본 연구에서는 새로운 결합 모델을 제시하고 이를 통해 예측 오차를 감소시킬 수 있는 가능성을 제시한다. 제시된 결합모델의 성능을 검증하기 위해서 국내 자동차보험 회사의 고객데이터를 바탕으로 고객이탈 예측문제를 다루었다. 결합모델의 예측결과를 의사결정나무, 사례기반추론 그리고 인공신경망 중 하나의 기법만을 사용하여 예측한 결과와 비교 평가하였다. 평가 결과, 결합 모델의 예측 적중률이 개별 기법의 예측 적중률보다 우수했다.

  • PDF

Analysis of Dynamical State Transition and Effects of Chaotic Signal in Cyclic Neural Network (순환결합형 신경회로망의 동적 상태천이 해석과 카오스 신호의 영향)

  • 김용수;박철영
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.199-202
    • /
    • 2002
  • 신경회로망을 동적 정보처리에 응용하기 위해서는 비대칭 결합 신경회로망에서 생성되는 동적 상태천이에 관한 직관적 이해가 필요하다. 자기결합을 갖고 결합하중치가 비대칭인 순환결합형 신경회로망은 복수 개의 리미트사이클이 기억 가능하다는 것이 알려져 있다. 현재까지 이산시간 모델의 네트워크에 대한 상태천이 해석은 상세하게 이루어져 왔다. 그러나 연속시간 모델에 대한 해석은 네트워크 규모의 증가에 따른 급격한 계산량의 증가 때문에 연구가 그다지 활발하게 이루어지지 않고 있다. 본 논문에서는 각 뉴런이 최근접 뉴런에만 이진화된 결합하중 +1 및 -1로 연결된 연속시간모델 순환결합형 신경회로망의 동적인 상태천이 특성을 해석하여 이산시간 모델에서 기억 가능한 리미트사이클과의 차이점을 분석한다. 또한 연속시간 네트워크 모델에 카오스 신호를 인가하여 리미트사이클간의 천이를 제어할 수 있는 가능성을 분석하여 동적정보처리에 네트워크를 응용할 수 있는 가능성을 검토한다.

Jointly Learning Model using modified Latent Structural SVM (Latent Structural SVM을 확장한 결합 학습 모델)

  • Lee, Changki
    • Annual Conference on Human and Language Technology
    • /
    • 2013.10a
    • /
    • pp.70-73
    • /
    • 2013
  • 자연어처리에서는 많은 모듈들이 파이프라인 방식으로 연결되어 사용되나, 이 경우 앞 단계의 오류가 뒷 단계에 누적되는 문제와 앞 단계에서 뒷 단계의 정보를 사용하지 못한다는 단점이 있다. 본 논문에서는 파이프라인 방식의 문제를 해결하기 위해 사용되는 일반적인 결합 학습 방법을 확장하여, 두 작업이 동시에 태깅된 학습 데이터뿐만 아니라 한 작업만 태깅된 학습데이터도 동시에 학습에 사용할 수 있는 결합 학습 모델을 Latent Structural SVM을 확장하여 제안한다. 실험 결과, 기존의 한국어 띄어쓰기와 품사 태깅 결합 모델의 품사 태깅 성능이 96.99%였으나, 본 논문에서 제안하는 결합 학습 모델을 이용하여 대용량의 한국어 띄어쓰기 학습데이터를 추가로 학습한 결과 품사 태깅 성능이 97.20%까지 향상 되었다.

  • PDF

Time Series Prediction by Combining Evolutionary Neural Trees (진화 신경트리의 결합에 의한 시계열 예측)

  • 정제균;장병탁
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10b
    • /
    • pp.342-344
    • /
    • 1999
  • 신경트리(evolutionary neural trees)는 트리 구조의 신경망 모델로서 진화 알고리즘으로 학습하기에 적합한 구조이다. 본 연구에서는 진화 신경트리를 시계열 예측에 적용하였다. 시계열 데이터는 대개 잡음이 포함되어 있으며 동역학적인 특성을 지닌다. 본 논문에서는 견고한 예측 결과를 획득하기 위해 한 개의 신경트리가 아닌 여러개의 신경트리를 결합하여 예측 모델을 구성하는 committee machine을 소개한다. 출력 패턴가에 correlation이 최소가 되도록 상이한 신경트리를 선택하여 결합함으로써 모델 결합 효과를 최대화하는 방법을 사용하였다. 인공적인 잡음을 포함한 시계열 예측 문제와 실세계 데이터에 대한 실험에서 예측에 대한 정확도가 단일 모델을 사용한 경우 보다 향상되었다.

  • PDF

An Empirical Study on the Cryptocurrency Investment Methodology Combining Deep Learning and Short-term Trading Strategies (딥러닝과 단기매매전략을 결합한 암호화폐 투자 방법론 실증 연구)

  • Yumin Lee;Minhyuk Lee
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.1
    • /
    • pp.377-396
    • /
    • 2023
  • As the cryptocurrency market continues to grow, it has developed into a new financial market. The need for investment strategy research on the cryptocurrency market is also emerging. This study aims to conduct an empirical analysis on an investment methodology of cryptocurrency that combines short-term trading strategy and deep learning. Daily price data of the Ethereum was collected through the API of Upbit, the Korean cryptocurrency exchange. The investment performance of the experimental model was analyzed by finding the optimal parameters based on past data. The experimental model is a volatility breakout strategy(VBS), a Long Short Term Memory(LSTM) model, moving average cross strategy and a combined model. VBS is a short-term trading strategy that buys when volatility rises significantly on a daily basis and sells at the closing price of the day. LSTM is suitable for time series data among deep learning models, and the predicted closing price obtained through the prediction model was applied to the simple trading rule. The moving average cross strategy determines whether to buy or sell when the moving average crosses. The combined model is a trading rule made by using derived variables of the VBS and LSTM model using AND/OR for the buy conditions. The result shows that combined model is better investment performance than the single model. This study has academic significance in that it goes beyond simple deep learning-based cryptocurrency price prediction and improves investment performance by combining deep learning and short-term trading strategies, and has practical significance in that it shows the applicability in actual investment.

A Component Transformation Technique based on Model for Composition of EJB and COM+ (EJB와 COM+ 결합을 위한 모델기반 컴포넌트 변환 기법)

  • 최일우;신정은;류성열
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.12
    • /
    • pp.1172-1184
    • /
    • 2003
  • At present, new techniques based on different component reference models for the integration of component and system of different platforms, such as EJB and COM+, are introduced. The operation between the components in the identical component platform is realized by the composition at the source level. In case of the different component platform, however, it is impossible to use combined components in real condition although they are components of similar domain. In this paper we proposed a solution for the composition problem by using component transformation methodology based on model between EJB and COM+ components which are different components. For the composition between EJB and COM+ components, we compared and analyzed each reference model, then proposed the Virtual Component Model which is implementation independent and the Implementation Table for the mutual conversion. Reffering to the Virtual Component Model and the Implementation Table, we can generalize each Implementation model to the Virtual Component Model, make the Virtual Component Model which is implementation independent through the virtual component modeling, transform EJB and COM+ components selectively. Proposing the effective Model Transformation method to the different component platform, we can combine EJB and COM+ components.

Customer List Segmentation Using the Combined Response Modeling (결합 리스펀스 모델링을 이용한 고객리스트 세분화)

  • Eui-ho Seo;Kap-chel Noh;Eung-beom Lee
    • Asia Marketing Journal
    • /
    • v.1 no.2
    • /
    • pp.19-35
    • /
    • 1999
  • 데이터베이스 마케팅 전략을 수립하고 집행함에 있어서 고객에게 접근하기 위한 촉진 매체로써 직접우편(Direct Mail)과 텔레 마케팅 등의 직접반응매체를 주요 수단으로 하는 경우 이를 다이렉트 마케팅이라고 한다. 다른 마케팅 전략들과 마찬가지로 다이렉트 마케팅에서도 마케팅 자원이 효과적으로 사용될 수 있도록 고객 데이터베이스를 세분화하는 작업을 수행한다. 리스펀스 모델링(Response Modeling)은 다이렉트 마케팅분야에서 고객리스트를 세분화하고 각 세그멘트별로 고객의 반응(구매행위)을 예측하는 기법을 말하며 RFM(Recency, Frequency, Monetary), 로지스틱, 신경망은 리스펀스 모델링을 위해서 가장 널리 사용되고 있는 기법이다. 과거에 이들 방법은 고객 데이터베이스 전체에 단독 모델로 적용되어 왔으나 이러한 단독 모델을 고객 데이터베이스에 적용하는 것이 정당화 되려면 고객들이 동일한 방식으로 반응한다는 전제가 필요하다. 그러나 일반적으로 고객의 반응방식에는 상당한 이질성이 존재한다. 예컨대 직업, 나이, 소득, 성별 등이 같다고 해서 같은 구매패턴을 보이지는 않는다는 것이다. 즉 고객A의 구매행위는 회귀선에 의해서 잘 설명되는 반면에 고객B는 신경망이나 RFM으로 잘 설명될 수 있는 경우가 존재하는 것이다. 이러한 구매행위의 이질성을 반영하기 위해서 최근에는 두개 이상의 방법을 결합하여 사용하는 결합 리스펀스 모델링 방법도 시도 되어 왔다. 그러나 결합 리스펀스 모델링에 관한 기존 연구들은 상관관계가 낮은 모델들을 결합함으로써 세분화의 효과를 단독 모델을 사용할 때 보다 개선할 수 있다고는 하였으나 구체적으로 어떤 모델들이 서로 낮은 상관관계를 갖는지는 보여주지 못하였다. 본 논문에서는 RFM 방법을 모델 내에서 사용하는 변수와 이를 이용한 모델링 방법상의 차이로 인하여 다른 두 방법(로지스틱, 신경망)과 매우 낮은 상관관계를 갖는 방법으로 제시하고 RFM과 다른 두 방법간의 낮은 상관관계를 이용하여 결합하는 경우 모델의 예측효과를 상당히 개선할 수 있음을 사례분석을 통해서 보이고자 한다.

  • PDF