• Title/Summary/Keyword: 결합재 조합

Search Result 186, Processing Time 0.03 seconds

A Study on Economically-Efficient Binder Combination of 80MPa Ultra High Strength Concrete (경제성을 고려한 80MPa급 초고강도 콘크리트의 결합재 조합에 대한 검토)

  • Park, Chun-Jin;Koh, Kyung-Teak;Ryu, Gum-Sung;Ahn, Gi-Hong;Ahn, Sang-Ku
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.1
    • /
    • pp.64-71
    • /
    • 2015
  • Silica fume is generally adopted as admixture for Ultra High Strength Concrete (UHSC) owing to its remarkable contribution to the strength and durability but increases significantly the fabrication cost of UHSC. Accordingly, this study investigates the replacement of silica fume by blast furnace slag (BS) and fly ash (FA) in order to lower the fabrication cost of 80MPa-UHSC. To that goal, experiment is conducted on the mix proportions of mortar in terms of its binder combination, water-to-binder ratio (W/B) and unit binder content. Based on the experimental data, a mix design of concrete is derived and its properties are verified. The results reveal that a W/B of 21% and unit binder content of $720kg/m^3$ are appropriate to achieve 80MPa-UHSC using a binder composed of 60% of OPC, 30% of BS and 10% of FA. The properties of the corresponding UHSC are seen to be satisfactory with a slump flow of 715mm and compressive strength of 97MPa at 28days. The application of the binder combination derived in this study is analyzed to reduce the cost by 50% of binder compared to the mix using silica fume while realizing equivalent performance.

재조합 인간 GM-CSF의 수용체에 관한 연구

  • 이부연;최상운;이정옥;공재양
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1993.04a
    • /
    • pp.148-148
    • /
    • 1993
  • 본 실험에서는 유전자 재조합으로 제조한 [$^{125}$ I]-labeled human GM-CSF을 사용하여 GM-CSF의 HL-60 (promyelocytic leukemic cell)의 표면에 존재하는 GM-CSF의 수용체의 특성을 알고 GM-CSF의 수용체에 어떤 parameter로 결합하는지를 밝히고 나아가 현재 사용되고 있는 유전자 재조합으로 제조된 Prokine(Sargramostim)과 Lucky에서 제조된 GM-CSF (LDB-005)의 수용체에 대한 결합율을 측정, 비교하고자 하였다. 본 실험의 결과를 보면 유전자 재조립으로 제조된 Human[$^{125}$ I] GM-CSF가 HL-60 cell에 대하여 선택적으로 결합하고 표면수용체에 saturable하게 결합함을 알 수 있었으며 scatchard analysis 결과한 종류의 GM-CSF의 K3값은 2.03$\times$$10^{9}$/M로($IC_{50}$/=~493pM) 세포당 결합부위의 수는 75개 정도로 J. DiPersio et al과 Linda S. Park et al.의 보고와 비슷한 결과를 얻었다.

  • PDF

재조합 인간 GM-CSF의 수용체에 관한 연구

  • 이부연;최상운;이정옥;공재양
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1994.04a
    • /
    • pp.307-307
    • /
    • 1994
  • 본 실험에서는 유전자 재조합으로 제조한 〔$^{125}$/I〕-labeled human GM-CSF를 사용하여 GM-CSF의 HL-60 cell의 표면에 존재하는 GM-CSF 수용체의 특성을 밝히고 수용체에 대한 binding parameter를 확인하고 Immunex(미국) 사에서 제조한 Prokine(Sargramostim)과 Sigma사에서 구입한 GM-CSF(C-9666)를 표준물질로 하여 (주) Lucky에서 제조한 GM-CSF(LBD-005)의 수용체에 대한 결합율을 측정, 각각 비교하고자 하였다. 한편 LBD-005는 glycosylation된 form과 안된 form의 혼합물이므로 당화의 정도가 수용체에 대한 결합에 미치는 영향을 알아보기 위해 glycosylated form과 혼합물(LBD-005)의 수용체에 대한 결합율을 측정 비교하였다.

  • PDF

The development of murine recombinant single-chain variable domain fragment (ScFv) specific to acute non-lymphocytic leukemia (ANLL) cell line HL60 (인간의 급성 비임파성 백혈암세포(HL60)의 표면항원에 결합하는 재조합 single-chain Fv (ScFv)의 개발)

  • Kim, Cheol Hong;Han, Seung Hee;Kim, Hyeong Min;Han, Jae Yong;Lim, Myeong Woon;Kim, Jin-Kyoo
    • Korean Journal of Microbiology
    • /
    • v.51 no.2
    • /
    • pp.115-125
    • /
    • 2015
  • A monoclonal antibody AP64 IgM binds to human acute nonlymphocytic leukemia (ANLL) cell line HL60 and also cross-reacts with the homologous antigen in a rat ANLL cell. This antibody mediated by complement, has leukemia a suppression effect. In this study, we generated a recombinant single-chain variable domain fragment (ScFv) which were derived from $V_H$ and $V_L$ cDNA of AP64 IgM-secreting hybridoma by RT-PCR. The two variable regions were joined with a single 15 amino acid linker $(G_4S)_3$. This recombinant ScFv was expressed as a single polypeptide chain from Escherichia coli BMH 71-18. The recombinant ScFv was purified by applying the periplasmic extract to $Ni^+$-NTA-agarose affinity column and detected with westernblot. The purified recombinant ScFv recognized a surface antigen (about 30 kDa) of HL60 cell line which is the same antigen detected by parental AP64 IgM. But the affinity of ScFv for a surface antigen of HL60 was lower than that of the parental AP64 IgM, which needs to be further improved. Overall, the recombinant ScFv specific to HL60 might be a useful bioreagent for either diagnostic or therapeutic purposes.

Involvement of Brca1 in DNA Interstrand Cross-link Repair Through Homologous Recombination-independent Process (재조합 비의존적 경로를 통한 DNA 사슬간 교차결합 복구에의 Brca1단백질의 기능)

  • Yun, Jean-Ho
    • Journal of Life Science
    • /
    • v.15 no.4 s.71
    • /
    • pp.542-547
    • /
    • 2005
  • Hypersensitivity of cells lacking Brcal to DNA interstrand .ross-link (ICL) agents such as cisplatin and mitomycin C(MMC) implicates the important role of Brcal in cellular response following ICL treatment. Brca1 plays an essential role in DNA double-strand break (DSB) repair through homologous recombination (HR)-dependent and -independent process. Recently, our group has been reported that Brca1 involves in cellular ICL response through HR-dependent repair process (Yun J. et at., Oncogene 2005). In this report, the involvement of Brca1 protein in HR-independent repair process is examined using isogenic $p53^{-/-}\;and\;p53^{-/-}\;Brcal^{-/-}$ mouse embryonic fibroblast (MEF) and psoralen cross-linked reporter reactivation assay. Brcal-deficient MEFs showed significantly low HR-independent repair activity compare to Brca1-proficient MEFs. Hypersensitivity to MMC and ICL reporter repair activity were restored by the reconstitution of Brca1 expression. Interestingly, MEFs expressing exon 11-deleted isoform of Brca1 $(Brca1^{\Delta11/\Delta11})$ showed high resistance to MMC and ICL reporter repair activity comparable to Brca1-reconstituted MEFs. Taken together, these results suggest that Brca1 involves in ICL repair through not only HR-dependent process but also HR-independent process using N-terminal RINC finger domain or C-terminal BRCT domain rather than exon 11 region which mediate interaction with Rad50.

C-terminal Fusion of EGFP to Pneumolysin from Streptococcus pneumoniae modified its Hemolytic Activity (Streptococcus pneumoniae가 생산하는 pneumolysin의 EGFP 융합으로 인한 용혈활성 변화)

  • Chung, Kyung Tae;Lee, Jae Heon;Jo, Hye Ju
    • Journal of Life Science
    • /
    • v.28 no.1
    • /
    • pp.99-104
    • /
    • 2018
  • Streptococcus pneumoniae is one of the major pathogens in community-acquired diseases, and it contains several factors that promote its pathogenesis, including pneumolysin (PLY). PLY is a member of the cholesterol-dependent cytolysin family, which attacks cholesterol-containing membranes, thereby forming ring-shaped pores. Thus, it is a major key target for vaccines against pneumococcal disease. We cloned the PLY gene from S. pneumoniae D39 and inserted it into the pQE-30 vector. Recombinant PLY (rPLY) was overexpressed in Escherichia coli M15 and purified by $Ni^{2+}$ affinity chromatography. Similarly, a PLY-EGFP fusion gene was produced by inserting the EGFP gene at the 3' end of the PLY gene in the same vector, and the recombinant protein was purified. Sodium dodecyl sulfate - polyacrylamide gel electrophoresis (SDS-PAGE) showed that both recombinant proteins were purified. rPLY exhibited significant hemolytic activity against 1% human red blood cells (RBCs). Complete hemolysis was obtained at 500 ng/ml, and 50% hemolysis was found with a 240 ng/ml concentration. In contrast, rPLY-EGFP did not show hemolytic activity. However, rPLY-EGFP did bind the RBC membrane, indicating that rPLY-EGFP lost hemolytic activity via EGFP fusion, while retaining its membrane-binding ability. These data suggest that PLY's C terminus is important for its hemolytic activity. Therefore, these two recombinant proteins can be extremely useful for investigating the toxin mechanism of PLY and cell damage during pneumonia.

Suggesting Optimum Mix Proportion of Hardener for Soil-pavement Concrete Incorporating Natural Organic Lime and Magnesia-lime (천연유기석회 및 고토석회를 조합한 흙 포장 콘크리트용 경화재의 최적배합안 도출)

  • Han, Min-Cheol;Han, Jun-Hui
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.2
    • /
    • pp.113-121
    • /
    • 2020
  • Lots of soil-pavement concrete placed showed a number of problems such as decreasing strength, and durability. In this research, to provide a solution of the problem reported the wasting materials of natural organic lime and magnesia lime were used as a hardener to achieve sufficient performance of soil-pavement concrete. Namely, as a stimulus of blast furnace slag, the natural organic lime and magnesia lime were tested within the mix proportion of 0 to 10 % for each lime to make a new hardener. As a result, in the case of mortar with 1 to 3 % of cement to fine aggregate, 30 % replaced blast furnace slag showed the more favorable results with 5 to 5 % of mix proportion for natural organic lime and magnesia lime.

The Development of Chicken Recombinant Single-chain Fv (ScFv) Antibody Reactive with Sporozoite Antigen of Eimeria spp. which Causes Avian Coccidiosis (가금 콕시듐증을 일으키는 Eimeria spp.의 포자충 항원에 결합하는 닭의 재조합 항체(ScFv)의 개발)

  • Park, Dong-Woon;Kim, Eon-Dong;Kim, Sung-Heon;Han, Jae-Yong;Kim, Jin-Kyoo
    • Korean Journal of Poultry Science
    • /
    • v.38 no.4
    • /
    • pp.323-330
    • /
    • 2011
  • The chicken monoclonal antibody (mAb), 13C8, reacts with sporozoite antigens of Eimeria spp. which causes avian coccidiosis. Since this mAb was produced at low amount due to genetic instability of chicken hybridoma, a recombinant 13C8 single-chain Fv (ScFv) antibody was constructed by amplification of the variable domain of heavy (VH) and light chain (VL) genes of antibody derived from chicken hybridoma. The constructed 13C8 ScFv was successfully expressed in E. coli and purified as a soluble form. In ELISA analysis, this recombinant 13C8 ScFv antibody showed antigen binding activity as the original mAb. In addition, nucleotide sequence comparison of 13C8 gene to the germline chicken VL and VH genes suggested that the gene conversion with $V{\lambda}$ and VH pseudogenes might contribute to the diversification of VL and VH genes in chickens.

Growth and Cadmium Removal in Recombinant Saccharomyces cerevisiae Harboring A Metallothionein Gene (Metallothionein 유전자가 도입된 재조합 Saccharomyces cerevisiae의 생육과 카드뮴 제거)

  • 김대옥;박성식서진호
    • KSBB Journal
    • /
    • v.11 no.5
    • /
    • pp.543-549
    • /
    • 1996
  • Recombinant Saccharomyces cerevisiae BZ-pJ containing the gene coding for metallothionein, a metalbinding protein was grown in the medium with high cadmium concentrations to study the characteristics of growth and cadmium uptake. High concentrations of cadmium reduced cell growth and final cell density and increased the lag phase periods of the recombinant yeast. Addition of 10 mg $Cd^{2+}$/L to the growth medium remarkably decreased a lag period and enhanced the specific cadmium uptake to 52.6 mg $Cd^{2+}$/g dry cell. The effect of copper addition was further investigated in the medium of 680 mg Cd2+/L. An increase in copper concentration from 11.0 to 33.3 mg/L enhanced the specific cadmium uptake from 17.0 to 42.0 mg Cd2+/g dry cell.

  • PDF

Heavy-Metal Adsorption by Recombinant Saccharomyces cerevisiae Harboring Multiple Copies of the CUP1 Gene (구리흡착 단백질 유전자를 함유하는 재조합 효모의 중금속 흡착)

  • 서진호;박상옥;김명동;한기철;전영석;안장우;한남수
    • KSBB Journal
    • /
    • v.17 no.1
    • /
    • pp.38-43
    • /
    • 2002
  • Characteristics of cell growth and heavymetal adsorption by recombinant Saccharomyus cerevisiae strains harboring multiple copies of the CUP1 gene encoding metallothione (MT) protein were studied in batch cultures. Recombinant S. cerevisiae strains harboring multiple copies of the CUP1 gene were superior to the host and wild-type yeast strains in terms of cell growth and heavy metal removal, indicating that the copy number of the CUP1 gene for MT expression played an important role in the adsorption of heavy metals. It was suggested that the CUP1 promoter for the MT expression is induced by manganese and zinc as well as copper An optimum copper concentration for MT expression and concomitant adsorption of heavy metals by recombinant S. cerevisiae was found to be 0.31 mM. A nonionic surfactant Triton X-100 enhanced cell growth by 17.7% and removal of zinc by 6.1% compared with the control case.