• Title/Summary/Keyword: 결합강도

Search Result 1,844, Processing Time 0.044 seconds

A STUDY ON THE SHEAR BOND STRENGTH OF LUTING GLASS IONOMER AND DENTIN TREATED WITH CALCIUM SOLUTION (칼슘수용액으로 처리한 상아질과 합착용 글래스아이오노머의 전단결합강도에 관한 연구)

  • Paik, Young-Girl;Lee, Sung-Bok;Park, Nam-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.34 no.3
    • /
    • pp.593-610
    • /
    • 1996
  • The objective of this paper was to evaluate the shear bond strength of luting glass ionomer cement with defferent calcium based solution treatment on dentin surface. 120 extracted human teeth were classified into 12 group based on presence of smear layer on dentin surface and type of treatment solution. Smear layer remove on dentin surface was done using 6% citric acid for 60 seconds. Five different dentin surface treatment solutions(calcium acetate, calcium carbonate, clacium chlorided, calcium hydroxide, and calcium phosphate) were evaluated in this study. After surface modification, metal ring(inner diameter : 3mm, depth : 1mm) was placed to expose the same dentin surface area and inner space was filled with luting glass ionomer cement according to the recommended procedure for stadard clinical procedure. The shear bond strength of glass ionomer cement was determined after 24 hours. SEM was used for the evaluation of the surface morphologic changes and EDAX analysis was done for determination of the change of the calcium contents of treated dentin. Follwing conclusion can be drawn : 1. In the group of the dentin surface with smear layer, the calcium carbonate solution was the most effective for the increase of the clacium content and the shear bond strength of glass ionomer cement to dentin surfaces. 2. In the group of the calcium carbonate treated dentin with msear layer, the shear bond strength was increased twice compared to the control group and cohesive failure mode was observed. 3. The shear bond strength of cement was increased significantly be the removal of smear layer using 6% citric aicd. However, additional calcium solution treatments were not effective for further bond strength increase. 4. The shear bond strength of cement was significantly improved by both of the removal of smear layer and the calcium solution treatment, and the former was more effective for bond strength improvement. 5. The smear layer removed/calcium solution treated groups showed dentinal tubule obstruction and crystal attachment in SEM evaluation. However, the shear bond strengths of these groups were not increased compared to the smear layer removed/no dentin treatment group.

  • PDF

A STUDY ON THE BOND STRENGTH OF HEAT-CURING ACRYIC RESIN BONDED TO A SURFACE OF CASTED ALLOY (주조 금속 표면과 열 중합 수지 표면간의 결합 강도에 관한 연구)

  • Lee, Yong-Seok;Chang, Ik-Tae
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.34 no.3
    • /
    • pp.620-631
    • /
    • 1996
  • Bonding of resin to cast alloy has traditionally been provided by mechanical retention. But, chemical bonding methods such as silicoating, tin plating, heat treatment, application of 4-META adhesives, have been developed to overcome the problems of the mechanical bonding methods. Silicoating has been used availaby in fixed prosthodontics, but is also reported to be used in removable prosthodontics. The aim of this study is to measure the tensile bond strength between resin and metal, and compare the effect of the type of metal and the grain size of the aluminum oxide on the bond strength, after metal surface roughening, coating of the opaque resin, and curing of heat-curing resin were performed. The test groups were divided into 4 groups according to the cast alloys and the aluminum oxide particles used. Group 1 : Type 4 gold alloy(DM66) blasted with $$50{\mu}m\;Al_{2}O_3$$ Group 2 : Type 4 gold alloy(DM66) blasted with $$250{\mu}m\;Al_{2}O_3$$, Group 3 : Co-Cr alloy(Nobilium) blasted with $$50{\mu}m\;Al_{2}O_3$$ Group 4 : Co-Cr alloy(Nobilium) blasted with $$250{\mu}m\;Al_{2}O_3$$ * 10 test specimens were made on each group. The specimens were thermocycled, and Instron Universal testing machine was used to measure the tensile bond strength of the finished specimens. The results were as follows : 1. Bond strengths showed that the group of gold alloy blasted with $250{\mu}m$ aluminum oxide particle had higher bond strength, and the group of gold alloy blasted with $50{\mu}m$ aluminum oxide particles had lower bond strength than any of the other groups. 2. Gold alloy had significantly higher bond strength when blasted with $250{\mu}m$ aluminum oxide particles than $50{\mu}m$, but. Co-Cr alloy showed no statistically significant difference between the two particle sizes. 3. When blasted with $50{mu}m$ aluminum oxide particles, Co-Cr alloy showed significantly higher bond strength than gold alloy. And, when blasted with $250{\mu}m$ aluminum oxide particles, gold alloy had significantly higher bond strength than Co-Cr alloy. 4. On the examination of the fractured sites, only the group of Co-Cr alloy blasted with $50{\mu}m$ aluminum oxide particles showed a part of residual opaque resin, but all the samples of the other groups fractured between the resin and the metal.

  • PDF

EFFECT OF A DESENSITIZER ON MICROTENSILE BOND STRENGTH OF DIFFERENT ADHESIVES (지각과민억제제 적용이 수종 접착제의 미세인장결합강도에 미치는 영향)

  • Hwang, Sung-Yeon;Lee, Kyung-Ha;Yu, Mi-Kyung;Lee, Kwang-Won
    • Restorative Dentistry and Endodontics
    • /
    • v.28 no.5
    • /
    • pp.378-384
    • /
    • 2003
  • This study evaluated the influence of a desensitizer(MS coat) on microtensile bond strength of different adhesives:a three-step adhesive(All-Bond 2), a two-step adhesive(Single Bond), a one-step adhesive(One-up Bond F). Non-caries extracted human molars were used. Dentin surface was obtained by horizontal section on mid-portion of crown using a water-cooled low speed diamond saw. Teeth were randomly divided into 6 group. AMO(MS coat + All Bond), SMO(MS coat + Single Bond)- and OMO(MS coat + One-up Bond F)-dentin surface were treated with 17% EDTA before bonded adhesive. AMX-, SMX- and OMX-dentin surface were bonded with All-Bond 2, Single Bond and One-up Bond F, respectively. with no previous treatment with MS coat and 17% EDTA. About 1cm high resin composite($Z-250^{TM}$) were incrementally build-up on the treated surface. The specimens for the microtensile test were serially sectioned perpendicular to the adhesive layer to obtain $0.7{\times}0.7mm$ sticks. 30 sticks were prepared from each group. After that. tensile bond strength for each stick was measured with Microtensile Tester at a 1mm/min crosshead speed. Fractured dentin surfaces were observed under the SEM. The results were statistically analysed by using a One-way ANOVA and Tukey's test(p<0.05). Value in MPa were: $AMO-44.35{\pm}13.21;{\;}SMO-39.35{\pm}13.32;{\;}OMO-31.07{\pm}10.25;{\;}AMX-49.22{\pm}16.38;{\;}SMX-56.02{\pm}13.35;{\;}OMX-72.93{\pm}16.19$. Application of MS coat reduced microtensile bond strengths of both Single Bond and One-up Bond F, whereas microtensile bond strengths of All-Bond 2 were not affected significantly.

COMPARISON OF THE SHEAR BOND STRENGTH OF GLASS IONOMER CEMENTS AND COMPOMER ACCORDING TO DENTIN SURFACE TREATMENT (상아질표면처리에 따른 글래스아이오노머 및 Compomer의 전단결합강도의 비교)

  • Jeong, Hyun-Suk;Lee, Hea-Joo;Hur, Buck
    • Restorative Dentistry and Endodontics
    • /
    • v.24 no.2
    • /
    • pp.416-425
    • /
    • 1999
  • The purpose of this study was to evaluate shear bond strength of glass ionomer cements and compomer according to dentin surface treatment method. The materials used in this study were dentin conditioner and cavity conditioner for dentin treatment: Ketacfil, Fuji II LC, and Dyract for restoration. In this study, 90 sound bovine teeth were selected and then the teeth were embeded in improved stone and were grounded with 400 to 600 grit silicon carbide paper to create a flat dentin surfaces. The teeth were divided into nine groups as follows ; Group 1A : Samples bonded to dentin surface with Ketacfil after no treatment Group 1B : Samples bonded to dentin surface with Ketacfil after applicating dentin conditioner Group 1C : Samples bonded to dentin surface with Ketacfil after applicating cavity conditioner Group 2A : Samples bonded to dentin surface with Fuji II LC after no treatment Group 2B : Samples bonded to dentin surface with Fuji II LC after applicating dentin conditioner Group 2C : Samples bonded to dentin surface with Fuji II LC after applicating cavity conditioner Group 3A : Samples bonded to dentin surface with Dyract after no treatment Group 3B : Samples bonded to dentin surface with Dyract after applicating dentin conditioner Group 3C : Samples bonded to dentin surface with Dyract after applicating cavity conditioner Treated dentin surfaces were observed under SEM. After filling of each materials, shear bond strenth was evaluated and then debonded surfaces were observed under SEM. The following results were obtained; 1. The shear bond strengths obtained were decreased as Fuji II LC, Dyract, Ketacfil in that order and there was statistically significant difference(p<0.05). 2. About Group 1. the shear bond strengths were decreased as 1C, 1B and 1A in that order. But there was no significant difference between group 1B and 1C (p<0.05). 3. About Group 2, the shear bond strengths were decreased as group 2B, 2A and 2C in that order. And there was significant difference between group 2B and 2C (p<0.05). 4. About Group 3, the shear bond strengths were decreased as group 3A, 3C and 3B in that order. And there was signicant difference between group 3A and 3B (p<0.05). 5. As a result of observation under SEM, the fracture patterns of Fuji II LC and Dyract were adhesive failures, but those of Ketacfil were cohesive failure of material and mixture of cohesive and adhesive failure.

  • PDF

An Experimental Study on the Behavior of Small Scale Curved Panel Using Composite Materials (복합소재를 활용한 곡면 패널 축소형 실험체의 구조 성능 평가)

  • Park, Hee Beom;Park, Jong-Sup;Kang, Jae-Yoon;Jung, Woo-Tai
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.1-8
    • /
    • 2018
  • FRP is a new material that is light, has high strength and high durability, and is emerging as a third construction material inside and outside of countries. However, very few studies have been done on curved FRP construction materials that can be used for tunnels or arched bridges. Because a small composite panel specimen is smaller than a full-size specimen, it can be used in a variety of experiments under different conditions. Therefore, in this study, experiments were performed on a void section, a solid section, a connected solid section, and a sand-coating solid section. The results of the experiment show that the connection of composite curved panels with longitudinal connections provides almost equivalent performance to that of a single panel. However, it is necessary to strengthen the connections, since the connections that are most susceptible to damage will break first.

Development of flame retardant materials utilizing recycled polypropylene and inorganic waste (재활용(再活用) 폴리프로필렌과 무기계(無機界) 폐기물(廢棄物)을 이용(利用)한 난연성(難燃性) 소재(素材) 개발(開發))

  • Chun, Byoung-Chul;Cho, Tae-Keun;Park, Hyun-Gue;Choi, Hyung-Joon;Chung, Yong-Chan;Jeon, Ho-Seok
    • Resources Recycling
    • /
    • v.16 no.4
    • /
    • pp.17-26
    • /
    • 2007
  • Inorganic shell powder waste was added to recycled polypropylene(COPP), and its effect on the mechanical properties and flammability was investigated. Compatibilizer(Polytail H) was added to improve mechanical properties of COPP/shell composites. Also three different flame retardants($Al_2O_3$, DBDPO, $Sb_2O_3$) were added to improve flammability. Experimental results indicated that addition of compatibilizer resulted in an improved mechanical properties, and especially impact strength approached that of 100 wt% COPP. Addition of flame retardant did not result in decreased mechanical properties. UL-94 flammability test indicated that COPP/shell composite did not show good flame retardancy, however, in the case of COPP/shell composites containing flame retardant showed good flammability. flammability was found $Sb_2O_3>Al_2O_3>DBDPO$ in this order. Finally, UL-94 V-0 grade was found in COPP/shell composite with $Al_2O_3$, compatibilizer, and 40 wt% shell, and COPP/shell composites with $Sb_2O_3$.

Physical Properties Assessment of Soft Contact Lens with Halogen and Carboxylic Substituted Pyridine as Additive (할로겐과 카르복시산으로 치환된 피리딘 첨가제를 사용한 소프트 콘택트렌즈의 물성 평가)

  • Kim, Duck-Hyun;Sung, A-Young
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.20 no.4
    • /
    • pp.437-443
    • /
    • 2015
  • Purpose: This study evaluated the optical and physical and characteristics of soft contact lens polymerized with addition of 3-chloropyridine-4-carboxylic acid and 3-fluoropyridine-4-carboxylic acid in the basic hydrogel contact lens material. In particular, the utility of 3-chloropyridine-4-carboxylic acid and 3-fluoropyridine- 4-carboxylic acid as a hydrogel contact lens material was investigated. Methods: In this study, 3-chloropyridine-4-carboxylic acid and 3-fluoropyridine-4-carboxylic acid were used as additives. Also, 2-hydroxyethyl methacrylate, acrylic acid, methyl methacrylate and a cross-linker EGDMA were co-polymerized in the presence of AIBN as an initiator. Results: The physical properties of the produced polymers were measured as followings. The water content of 34.54~37.15%, refractive index of 1.4320~1.4342, tensile strength of 0.2872~0.3608 kgf and contact angle of $57.82{\sim}79.57^{\circ}$, UV-B transmittance of 76.8~82.4% and UV-A transmittance of 84.6~86.6% were obtained respectively. Conclusions: Based on the results of this study, contact lens material containing 3-chloropyridine-4-carboxylic acid and 3-fluoropyridine-4-carboxylic acid is expected to be able to used as a material for high wettability and UV-block hydrogel contact lens.

Optimum Mix Proportions of High Fluidity Antiwashout Underwater Concrete Using Ground Granulated Blast Furnace Slag (고로슬래그 미분말을 사용한 고유동 수중불분리성 콘크리트의 최적배합비 도출)

  • Kim, Sung-Wook;Park, Jung-Jun;Bae, Su-Ho;Park, Jae-Im
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3704-3712
    • /
    • 2012
  • Recently, antiwashout underwater concrete has been increasingly used for marine foundations of long span bridges. However, to shorten the construction period of antiwashout underwater concrete used in marine foundations, high fluidity antiwashout underwater concrete should be manufactured largely improving fluidity than the previous one. Thus, the objective of this experimental research is to suggest optimum mix proportions of high fluidity antiwashout underwater concrete. For this purpose, concrete specimens containing ground granulated blast furnace slag were manufactured according to the dosage of antiwashout admixture for unit binder contents of 550 and 600kg/$m^3$, respectively. And then, their quality performances such as slump flow, setting time, underwater segregation resistance, and ratio of compressive strength were evaluated according to the related specification of Korea Concrete Institute. It was observed from the test results that the minimum dosage of antiwashout admixture was necessary to satisfy the related specification.

EFFECTS OF SURFACE TREATMENTS AND STORAGE CONDITIONS ON TARGIS/DENTIN BOND STRENGTH (Targis 표면처리가 상아질과의 전단결합강도에 미치는 영향)

  • Oh, Young-Taek;Hwang, Su-Jin;Lee, Se-Joon;Lee, Kwang-Won
    • Restorative Dentistry and Endodontics
    • /
    • v.25 no.2
    • /
    • pp.262-271
    • /
    • 2000
  • The purpose of this study was to estimate shear bond strength according to difference in Targis surface treatment and storage condition. 140 non-carious extracted human molars and Targis D210(Ivoclar, Liechtenstein) were used in the present study and were divided into 7 experimental groups respectively according to surface treatment of Targis. Group 1 ; No treatment, Group 2 ; $50{\mu}m$ aluminium oxide blasting, Group 3 ; 4% HF etching for 3 minutes, Group 4 ; 4% HF etching after blasting, Group 5 ; silane treatment after blasting, Group 6 ; silane treatment after 4% HF etching, Group 7 ; silane treatment after blasting and 4% HF etching. In Each group, one half of 20 specimens was stored in distilled water at $37^{\circ}C$ for 24 hours and the other half was stored at atmosphere for 24 hours respectively. Dentin surface was etched with 10% $H_3PO_4$ for 15 seconds and luting cement(Variolink II, Vivadent, Liechtenstein) was applied by manufacturer's recommendation. Shear bond strength for each group was then measured. To examine the failure patterns after shear bond test and to observe the change after surface treatment of Targis. Specimens were fabricated and observed under the SEM. Statistical analysis was performed by One Way ANOVA test and t-test. The results were as follows ; 1. The shear bond strength of the groups stored in water significantly lower than that of groups stored at atmosphere (P<0.05). 2. There was no significant difference in shear bond strength in groups stored in water (P>0.05). 3. The shear bond strength without surface treatment of Targis were lowest among all experimental groups in atmosphere condition(P<0.05). 4. There was no significant difference in bond strength between groups using the silane or not(P>0.05). 5. The groups treated by blasting, hydrofluoric acid and silane sequentially showed highest bond strength than that of other groups in atmosphere condition, but there was no significant difference(P>0.05). 6 The proportions of the specimens showing the mixed fracture failure were 20% in HF etching group and blasting + HF group, 40% in blasting + HF + silane group in atmosphere condition. All the specimens stored in water showed adhesive fracture failure.

  • PDF

CHANGES OF TENSILE BOND STRENGTH ACCORDING TO THE DIFFERENCE IN LINING MATERIALS AND LINING AREA (이장재와 이장면적의 차이에 따른 인장결합강도의 변화)

  • Park, Jong-Duk;Lee, Yong-Woo;Ohn, Yeong-Suck;Lee, Kwang-Won
    • Restorative Dentistry and Endodontics
    • /
    • v.23 no.1
    • /
    • pp.443-460
    • /
    • 1998
  • The purpose of this study was to estimate the changes of tensile bond strength according to the difference in lining materials and lining area. Seventy non-carious extracted human molars were used in the present study, and they were randomly assigned into 2 experimental groups according to the difference in lining materials. Each experimental group was subdivided into 3 groups according to the difference in lining area. Circular cavities were prepared on the dentin surface to a diameter of 1.5mm, 2.0mm, 2.5mm and the prepared cavities were filled with Fuji II LC( Glass Ionomer Cement : GIC) or Dycal. Dentin specimens without circular cavity were used as control group. The primer and bonding agent of All-Bond 2 and composite resin (Z-100, 3M Dental Products, U. S. A.) were applied to the exposed dentin surface with or without lining. Tensile bond strengths for the experimental specimens were then measured. To examine the interface between dentin and liner & between liner and composite resin, two specimens from each group were fabricated and observed under the SEM. The results were as follows. 1. Tensile bond strength for the specimens lined with GIC was higher than that for specimens lined with Dycal. However, there was no significant difference between two groups(p>0.05). 2. Tensile bond strength for the specimens lined with GIC in a diameter of 1.5mm(GIC-1.5mm lining group) was statistically higher than that for the GIC-2.0mm lining group and GIC-2.5mm lining group(p<0.05). 3. Tensile bond strength for the specimens lined with Dycal in a diameter of 2.5mm (Dycal-2.5mm lining group)was statistically lower than that for Dycal-1.5mm lining group and Dycal-2.0mm lining group(p<0.05). 4. It was possible to observe the good adhesion of the resin composite to the GIC and the presence of a fissure between GIC and dentin all along the interface. Interfacial gaps of 7.2-$72.2{\mu}m$ between GIC and dentin were observed. The interfacial gap between GIC and dentin at the cavity base was greater. However, the gap was gradually decreased toward the occlusal portion. 5. It was possible to observe the poor adhesion of the resin composite to the Dycal. The detachment of Dycal was occurred all along the composite resin-Dycal interface, and the gaps of 2.0-$30.1{\mu}m$ were formed. In all the specimens, polymerization shrinkage of resin composite caused the detachment of Dycal from the body of Dycal. At a Dycal-dentin interface. it was possible to observe the good adhesion. but poor adhesion with interfacial gap of 2.9-$26.8{\mu}m$ was observed partially.

  • PDF