Proceedings of the Korean Information Science Society Conference
/
2008.06c
/
pp.482-486
/
2008
본 논문에서는 하드 디스크 드라이브(Hard Disk Drive, HDD) 생산 공정 과정에서 발생할 수 있는 불량 HDD의 결함 분포에 대해서 패턴을 자동으로 분류해주는 기법을 제시한다. 이를 위해서 표준 패턴 클래스로 분류되어 있는 불량 HDD의 각 클래스의 확률 모델을 GMM(Gaussian Mixture Model)로 가정한다. 실험은 전문가에 의해 분류된 실제 HDD 결함 분포로부터 5가지의 특징 값들을 추출한 후, 결함 분포의 클래스를 표현할 수 있는 GMM의 파라미터(Parameter)를 학습한다. 각 모델의 파라미터를 추정하기 위해 EM(Expectation Maximization) 알고리즘을 사용한다. 학습된 GMM의 분류 테스트는 학습에 사용되지 않은 HDD 결함 분포에서 5가지의 특징 값을 입력 값으로 추정된 모델들의 파라미터 값에 의해 사후 확률을 구한다. 계산된 확률 값 중 가장 큰 값을 갖는 모델의 클래스를 표준 패턴 클래스로 분류한다. 그 결과 제시된 GMM을 이용한 HDD의 패턴 분류의 결과 96.1%의 정답률을 보여준다.
KIM, Dong-Eun;SEONG, Yeong Bae;SOHN, Hak Gi;CHOI, Kwang Hee
Journal of The Geomorphological Association of Korea
/
v.19
no.4
/
pp.139-155
/
2012
Most of previous landform classification methods using DEM compares the values between the center of the cell and the surrounding cells, which in turn, greatly depends on analysis scale. To overcome the problem of scale-dependency, a new classification scheme is developed, which is called "Geomorphons". Unlike the traditional approaches using DEM, Geomorphons is the way which compares the level with other cells against the criteria cell. As a pilot study, we classify the landforms of Pyeongchang-Gun in Korea. Then, we compare the result with the other methods such as Topographic Position Index. Through the systematic analysis, we obtain the following findings. First, Geomorphons can reduce the time for the classification of landforms because of using unsupervised classification. Second, Geomorphons is little dependent on change in the scale, which can provide a pilot tool for reconnaissance study for covering large area.
Proceedings of the Korean Information Science Society Conference
/
2001.04a
/
pp.598-600
/
2001
본 논문에서는 양상 뮤 논리를 위한 속성 명세 패턴 연구를 통해 시제 논리에 대한 패턴 기반의 단일한 프레임워크를 제시한다. 본 연구에서는 Dwyer의 속성 명세 패턴 분류를 상태(S)와 행동(A)으로 세분화하고 이를 다시 강함(A)와 약함(E)으로 다시 세분했다. 이러한 의미 기반의 계층적 패턴 분류 체계를 통해 양상 뮤 논리의 속성 명세 패턴을 분석했으며 실제 모형 검사기에서 사용된 예제들의 패턴 분류에 적용했다. 그 결과 기존의 분류 체계보다 더 정확한 분류가 가능했을 뿐만 아니라, 속성 명세의 작성 및 이해가 용이하였다.
In this paper we show the LCD simulator for defect inspection using image processing algorithm and neural network. The defect inspection algorithm of the LCD consists of preprocessing, feature extraction and defect classification. Preprocess removes noise from LCD image, using morphology operator and neural network is used for the defect classification. Sample images with scratch, pinhole, and spot from real LCD color filter image are used. From some experiments results, the proposed algorithms show that defect detected and classified in the ratio of 92.3% and 94.5 respectively. Accordingly, in this paper, a possibility of practical implementation of the LCD defect inspection system is finally suggested.
In this paper we show the LCD simulator for defect inspection using image processing algorithm and neural network. The defect inspection algorithm of the LCD consists of preprocessing, feature extraction and defect classification. Preprocess removes noise from LCD image, using morphology operator and neural network is used for the defect classification. Sample images with scratch, pinhole, and spot from real LCD color filter image are used. From some experiments results, the proposed algorithms show that defect detected and classified in the ratio of 92.3% and 94.5 respectively. Accordingly, in this paper, a possibility of practical implementation of the LCD defect inspection system is finally suggested.
본 논문에서는 다층 퍼셉트론(Multi-Layer Perceptron)을 이용한 하드 디스크 결함 분포의 패턴 인식 기법을 제시한다. 결함 분포로부터 5 가지의 특징들을 추출하고, 이를 이용하여 퍼셉트론의 입력을 구성하였으며, 미리 분류된 표준 패턴 클래스를 이용하여 퍼셉트론의 출력을 구성하였다. 테스트 결과, 제시된 신경망은 하드 디스크의 패턴 분류에 만족할 만한 성능을 나타내었다.
Proceedings of the Korean Information Science Society Conference
/
1999.10b
/
pp.545-547
/
1999
본 논문에서는 불량 하드디스크 드라이브의 수리판정 자동화를 위해 필요한 하드디스크 드라이브(Hard Disk Drive, HDD) 결함이 분포패턴의 분류에 관한 연구 결과를 소개한다. HDD 제조공정에서는 테스트 진행중 검출된 결함에 관한 정보를 HDD 내부에 기록한다. 불량으로 판별된 HDD는 내부에 기록된 결함의 분포를 관찰한 후, 불량의 종류 및 그에 따르는 처리방안을 결정한다. 본 논문에서는 효율적인 결함분포 패턴의 특징추출을 위해, 하드디스크의 물리적 특성에 대한 분석을 바탕으로 극좌표(Polar Coordinates) 방식으로 표현된 결함 위치데이터를 직교좌표(Cartesian Coordinates)로 변환한다. 그리고 디스크 상의 두 동심원 사이의 공간을 정해진 회전각별로 등분한 후, 나누어진 구간별로 결함 발생빈도 히스토그램(Histogram) 분석을 수행하여 결함분포의 패턴을 분류하는 알고리즘을 제시한다. 설계된 알고리즘은 실제 HDD 제조공정에서 발생한 불량 HDD Set을 대상으로 적용한 결과, 그 효용성이 검증되었다.
Journal of The Institute of Information and Telecommunication Facilities Engineering
/
v.2
no.1
/
pp.71-77
/
2003
본 논문에서는 불량 하드디스크 드라이브의 수리판정 자동화를 위해 필요한 하드디스크 드라이브(Hard Disk Drive, HDD) 결함의 분포패턴의 분류에 관한 연구 결과를 소개한다. HDD 제조공정에서는 테스트 진행 중 검출된 결함에 관한 정보를 HDD 내부에 기록한다. 불량으로 판별된 HDD는 내부에 기록된 결함의 분포론 관찰한 후, 불량의 종류 및 그에 따른 처리방안을 결정한다. 본 논문에서는 효율적인 결함분포 패턴의 특징추출을 위해, 하드디스크의 물리적 특성에 대한 분석을 바탕으로 극좌표 (Polar Coordinates) 방식으로 표현된 결함 위치 데이터를 직교좌표(Cartesian Coordinates)로 변환한다. 그리고 디스크 상의 두 동심원 사이의 공간을 정해진 회전각별로 등분한 후, 나누어진 구간별로 결함 발생빈도 히스토그램 (Histogram) 분석을 수행하여 결함분포의 패턴을 분류하는 알고리즘을 제시한다. 설계된 알고리즘은 실제 HDD 제조공정에서 발생한 불량 HDD Set을 대상으로 적용한 결과, 그 효용성이 검증되었다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2001.12a
/
pp.303-306
/
2001
패턴 인식에서 선형 분류 가능한 경계면을 찾아 패턴을 분류하는 방법 중 가장 기본적인 방법은 퍼셉트론이라고 볼 수 있다. 하지만 선형 분류 불가능한 패턴에 대해서는 유용한 결과를 보여주지 못하였다. 먼저 제안된 퍼지 퍼셉트론은 베타영역 설정에 의해 수렴하지 못하는 특성을 보완하였다. 그러나 패턴의 순수한 전형성을 고려해 주지 못하는 단점이 있다. 이에 Crisp의 선형분류 특성과 퍼지의. 수렴특성을 합성하고자 Possibilistic 퍼셉트론을 제시한다.
Proceedings of the Korean Information Science Society Conference
/
2001.10b
/
pp.307-309
/
2001
분류문제에서 유용한 학습패턴은 클래스들간의 분류경계에 근접한 정상패턴들을 말한다. 본 연구에서는 다양한 구조와 학습 파라미터를 가진 신경망 앙상블을 구성하고 그 출력값의 편기와 분산에 기초한 패턴절수를 정의한다. 전체 학습패턴 중 일정한 임계값 이상의 패턴점수를 가진 패턴들만이 학습패턴으로 선정된다. 제안한 방법은 두 개의 인공문제와 두 개의 실제문제 (UCI Repository)에 적응, 검증되었다. 그 결과 선택된 패턴만으로 학습한 경우, 메모리 공간 절약 및 계산시간 단축의 효과뿐만 아니라 복잡도가 큰 모델이라도 과적합을 하지 않았고 실험적으로 안정된 결과를 산출했으며, 적은 수의 학습패턴만으로도 일반화 성능을 향상시키거나 적어도 저하시키지 않았다는 것을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.