• Title/Summary/Keyword: 결함 위치 추정

Search Result 1,523, Processing Time 0.028 seconds

Modeling the Urban Railway Demand Estimation by Station Reflecting Station Access Area on Foot (역세권을 반영한 도시철도 역별 수요추정 모형 개발)

  • Son, Ui-Yeong;Kim, Jae-Yeong;Jeong, Chang-Yong;Lee, Jong-Hun
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.2
    • /
    • pp.15-22
    • /
    • 2009
  • There exist some limits when we forecast urban railway demand by traditional 4 step model. The first reason is that the model based on socioeconomic data by an administrative unit, 'Dong', yields a 'Dong' unit trip matrix. But a 'Dong' often has two or more stations. The second reason is that urban railway demand by station would be affected rather by station access area on foot than by a 'Dong' unit. So the model based on 'Dong' characteristic data have some inaccuracies in itself. Owing to the limits of the model based on 'Dong' unit data, there exits some difficulty in forecasting urban railway demand by station. So this paper studied two alternatives. The first is to forecast the demand by using the data of station access area on foot rather than 'Dong' unit data. This needs too much time and effort to collect data and analyse them, while the accuracy of the model didn't improve a lot. The second is to adjust the location of 'Dong' centroid and the length of centroid connector link. By this way we can reflect the characteristics of station access area on foot under traditional 4 step model. Comparing the expected demand to the observed data for each station, the result looks like very similar.

Statistical estimation of forest fire risk considering spatial autocorrelation (공간상관성을 고려한 산불발생위험의 통계적 추정)

  • Kwak, Han-Bin;Lee, Woo-Kyun;Lee, Si-Young;Won, Myoung-Soo;Koo, Kyo-Sang;Lee, Myung-Bo;Lee, Byung-Doo
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2010.09a
    • /
    • pp.93-94
    • /
    • 2010
  • 본 연구는 공간통계적 방법을 이용하여 산불발생의 위험도를 통계적으로 예측하고자 하였다. 연구 재료는 전국에서 발생한 1991년부터 2008년까지 산불발생 위치자료를 이용하였다. 점사상을 양적데이터로 전환하기 위해 전국을 공간격자로 구성하여 격자형 자료화 하여 사용하였다. 전국산불 발생위치를 산불발생위치들 간의 공간상관성을 고려하여 일반적인 통계모형에 공간통계적인 기법을 더하여 산불발생의 위치를 더욱 정확하게 추정하고자 하였다. 이를 위해 회귀모형과 공간모형의 혼합모형의 한 방법인 regression kriging 방법을 적용하였다. 그 결과 공간상관성을 고려한 공간통계적 방법은 산불발생의 공간적 군집을 더욱 정확하게 예측할 수 있었다.

  • PDF

Fault Detection Method for Beam Structure Using Modified Laplacian and Natural Frequencies (수정 라플라시안 및 고유주파수를 이용한 보 구조물의 결함탐지기법)

  • Lee, Jong-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.611-617
    • /
    • 2018
  • The application of health monitoring, including a fault detection technique, is needed to secure the structural safety of large structures. A 2-step crack identification method for detecting the crack location and size of the beam structure is presented. First, a crack occurrence region was estimated using the modified Laplacian operator for the strain mode shape obtained from the distributed local strain data. The crack location and size were then identified based on the natural frequencies obtained from the acceleration data and the neural network technique for the pre-estimated crack occurrence region. The natural frequencies of a cracked beam were calculated based on an equivalent bending stiffness induced by the energy method, and used to generate the training patterns of the neural network. An experimental study was carried out on an aluminum cantilever beam to verify the present method for crack identification. Cracks were produced on the beam, and free vibration tests were performed. A crack occurrence region was estimated using the modified Laplacian operator for the strain mode shape, and the crack location and size were assessed using the natural frequencies and neural network technique. The identified crack occurrence region agrees well with the exact one, and the accuracy of the estimation results for the crack location and size could be enhanced considerably for 3 damage cases. The presented method could be applied effectively to the structural health monitoring of large structures.

Localization Algorithm in Wireless Sensor Networks Using a Directional Antenna (지향성 안테나를 이용한 무선 센서 네트워크에서의 위치 인식 알고리즘)

  • Hong, Sung-Hwa;Kang, Bong-Jik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.1
    • /
    • pp.111-118
    • /
    • 2010
  • The proposed algorithm to be explained in this paper is the localization technique using directional antenna. Here, it is assumed that anchor node has the ability to transfer the azimuth of each sector using GPS modules, sector antenna, and the digital compass. In the conventional sensor network, the majority of localization algorithms were capable of estimating the position information of the sensor node by knowing at least 3 position values of anchor nodes. However, this paper has proposed localization algorithm that estimates the position of nodes to continuously move with sensor nodes and traveling nodes. The proposed localization mechanisms have been simulated in the Matlab. The simulation results show that our scheme performed better than other mechanisms (e.g. MCL, DV-distance).

Location Estimation Method of Steam Leak in Pipelines Using Leakage Area Analysis (누설영역 분석을 이용한 배관 증기누설 위치 추정 방법)

  • Kim, Se-Oh;Jeon, Hyeong-Seop;Son, Ki-Sung;Park, Jong Won
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.5
    • /
    • pp.384-390
    • /
    • 2016
  • It is important to have a pipeline leak-detection system that determines the presence of a leak and quickly identifies its location. Current leak detection methods use a acoustic emission sensors, microphone arrays, and camera images. Recently, many researchers have been focusing on using cameras for detecting leaks. The advantage of this method is that it can survey a wide area and monitor a pipeline over a long distance. However, conventional methods using camera monitoring are unable to target an exact leak location. In this paper, we propose a method of detecting leak locations using leak-detection results combined with multi-frame analysis. The proposed method is verified by experiment.

One-dimensional Positioning using Iterative Linear Regression Based on Received Signal Strength and Mobility Information (반복선형회귀를 이용한 수신 신호 세기와 이동성 정보에 기반한 1차원 위치 추정)

  • Lee, Dong-Jun;Kim, Da-Yeong;Lee, Eun-Hye
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.2
    • /
    • pp.128-133
    • /
    • 2020
  • In this study, an 1-dimensional positioning method using iterative linear regression for path loss expression is proposed. In the proposed method, received signal strengths (RSS) measured in several locations and distances between the measuring locat ions obtained by dead reckoning are used to derive a linear regression for the path loss from the transmitting beacon. In the proposed method, for the distance between the transmitting beacon and a target measuring location, several tentative values are assumed. For each tentative value, a linear regression is obtained. Among the linear regression expressions, the one closest to the known reference RSS value is selected and used to derive the distance to the target location. Test results show that the proposed method is more accurate than path loss model.

A Study on Efficient UWB Positioning Error Compensation Technique (효율적인 UWB 무선 측위 오차 보상 기법에 관한 연구)

  • Park, Jae-Wook;Bae, Seung-Chun;Lee, Soon-Woo;Kang, Ji-Myung;Lee, Won-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.10A
    • /
    • pp.727-735
    • /
    • 2009
  • To alleviate positioning error using wireless ultra-wideband (UWB) is primary concern, and it has been studied how to reduce the positioning error effectively. Thanks to many repeated transmissions of UWB signals, we can have a variety of selections to point out the most precise positioning result. Towards this, scanning method has been preferred to be used due to its simplicity. This exhaustive method firstly fixes the candidate position, and calculates the sum of distances from observed positions. However, it has tremendous number of computations, and the complexity is more serious if the size of two-dimensional range is the larger. To mitigate the large number of computations, this paper proposes the technique employing genetic algorithm and block windowing. To exploit its superiority, simulations will be conducted to show the reduction of complexity, and the efficiency on positioning capability.

A Method of Speed-Adaptive Location Estimation Based on Hybrid(TDOA-RSSI) and Least Square Method in RTLS System (RTLS 시스템에서 Hybrid(TDOA-RSSI)와 최소자승법을 기반으로 한 속도적응형 위치추적방법)

  • Lee, Jung Woo;Ha, Deock-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.737-740
    • /
    • 2009
  • In this paper, in order to improve the location estimation error existing in RTLS(Real Time Location Service) system for the mobility individual, we proposed a method of speed-adaptive location estimation that the transmitting signaling period is adaptively changed according to the changing speed of a mobility individual for each location interval. To get the more accurate location estimation values, we analyzed both the location values measured by Hybrid(TDOA and RSSI) method by using AeroScout TM RTLS system and the estimated value obtained from the theoretical calculation by using the Least Squares Method. Finally, we compared the analyzed values with a real location of mobility individual. From the experimental results based on our proposed method, it can be seen that the location estimation error for the real location of a mobility individual can be improved.

  • PDF

Image Based Damage Detection Method for Composite Panel With Guided Elastic Wave Technique Part II. Damage Size Estimation Algorithm (복합재 패널에서 유도 탄성파를 이용한 이미지 기반 손상탐지 기법 개발 Part II. 손상크기 추정 알고리즘)

  • Kim, Changsik;Jeon, Yongun;Park, Jungsun;Cho, Jin Yeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.1
    • /
    • pp.13-20
    • /
    • 2021
  • In this paper, a new algorithm is proposed to estimate the damage size by combining the reflected area with the reflected position and extracting contours in proportion to the maximum value of pixels from the visible image. The cumulative summation feature vector algorithm is used to obtain the area of the reflected signal. To get the position of the reflected signal, the signal correlation algorithm is used to decompose the reflected signal from the damage. The proposed algorithm is tested and validated for composite panels. Repetitive experiments are performed and it is confirm that the proposed algorithm is reproducible. Further, it is verified that the damage size can be estimated appropriately by the proposed algorithm.

A Recognition of Double Landmarks for Correction of Location Estimation (위치 추정 오차 보정을 위한 이중 랜드마크 인식)

  • Kim, Da-Jung;Lim, Ho-Yung;Bang, Kyung-Ho;Jeon, Hye-Gyeong;Hong, Youn-Sik
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06b
    • /
    • pp.54-56
    • /
    • 2012
  • 본 논문에서는 위치인식 센서기반 무인이송차량(AGV)의 이동 제어 문제를 다루고자 한다. AGV의 진행 경로를 지시하는 랜드마크를 부착할 때 사각지역(dead zone) 및 중첩 지역(overlap zone)이 존재할 경우 위치 추정 오차가 허용 범위를 크게 벗어나게 되며, 이로 인해 AGV가 오동작하는 현상이 발생한다. 이를 해결하기 위해 본 논문에서는 단일 랜드마크 대신 이웃한 2개의 랜드마크 인식을 통해 위치 추정 오차를 보정하는 방안을 제안하였다. 또한, 회전 구간에서 AGV가 방향 전환 직후 지정된 경로에 허용오차 범위 이내로 진입하도록 안쪽 바퀴와 바깥쪽 바퀴의 가속도 제어 알고리즘을 제안하였다. 본 논문에서 개발된 시스템은 화장장 시신 운구용 AGV에 적용하였다. 화장장은 기존 산업 현장에 비해 이동 공간이 협소할 뿐만 아니라 그 특성상 정밀 제어가 필요한 환경이다. 본 논문에서 제안한 방식은 모의 차량에 적용하여 그 타당성을 검증하였으며, 실제 국내 화장장에 AGV 시스템을 적용한 결과 허용오차 범위 이내에서 정상 동작함을 확인하였다.