자동 게임 프로그램(auto-playing game programs)은 게임 플레이어를 대신하여 게임 캐릭터를 조종하는 프로그램으로 MMORPG(massively multi-player online role playing game)에서 빈번히 사용되고 있다. MMORPG에서 게임 캐릭터의 레벨을 올리기 위해서는 경험치가 필요하며, 경험치 증가 과정에서 아이템을 구매할 때 사용되는 게임 머니와 특정한 기술을 사용할 수 있는 아이템을 획득한다. 이러한 레벨-업 과정에서 게임 플레이어들은 지루함을 느끼게 되고, 빠른 게임 캐릭터의 성장을 위해 자동 프로그램을 사용하여 게임 캐릭터의 레벨을 증가시키는 경우가 빈번히 발생한다 그러나 자동 프로그램은 게임상에서 비정상적으로 자원을 독점하여 게임 시스템을 황폐화시킬 뿐만 아니라, 불법적인 수익사업으로 악용되어 건전한 게임산업 육성을 방해한다. 본 논문에서는 이러한 자동 게임 프로그램을 찾아내기 위하여 게임 캐릭터에 의해 발생되는 마우스와 키보드를 포함한 윈도우 이벤트 시퀀스를 분석하고, 이벤트 시퀀스로부터 속성 벡터를 생성하여 결정트리 학습을 수행하였다. 결정트리 학습은 윈도우 이벤트 시퀀스에 의해 생성된 속성 벡터들을 이용하여 자동 프로그램을 분류한다. 본 논문에서는 윈도우 이벤트 시퀀스를 활용하여 생성한 26개의 속성들을 결정트리 학습에 적용함으로써 MMORPG에서 자동 프로그램을 효과적으로 분류할 수 있다는 것을 MMORPG에 속하는 몇 가지 게임에 대한 실험을 통해 확인하였다.
기존의 한방 자가 진단 방법에서는 PCM 기반의 알고리즘을 적용시켰으나 고질적인 문제점 중의 하나인 증상 수가 급격하게 증가할 경우에는 진단 결과가 정확하게 도출되지 않는 현상이 발생한다. 이러한 문제점을 개선하는데 효율적인 퍼지 의사 결정 트리 알고리즘을 적용한다. 퍼지 의사 결정 트리는 과거의 데이터를 미리 학습시킨 후에 엔트로피에 따라 경계 값을 구한 후, 사용자가 여러 증상을 입력하면 입력된 증상에 해당되는 상위 질병 5개를 도출한다. 그리고 도출된 상위 5개의 질병과 도출된 질병의 원인과 치료하기 위한 민간요법을 제공한다. 질병과 증상에 대한 데이터베이스는 한의사가 추천한 여러 한의학 전문 서적을 기반으로 증상과 질병의 데이터베이스를 설계한 후, 한의학 전문의의 검증을 거쳐 구현하였다. 제안된 한방 자가 진단 시스템은 과거의 데이터를 바탕으로 증상을 학습함으로써 기존의 질병 진단 시스템보다 정확하고 신속한 진단 결과를 도출하는 것을 확인하였다.
최대 엔트로피 모델(maximum entropy model)은 여러 가지 자연언어 문제를 학습하는데 성공적으로 적용되어 왔지만, 두 가지의 주요한 문제점을 가지고 있다. 그 첫번째 문제는 해당 언어에 대한 많은 사전 지식(prior knowledge)이 필요하다는 것이고, 두번째 문제는 계산량이 너무 많다는 것이다. 본 논문에서는 텍스트 단위화(text chunking)에 최대 엔트로피 모델을 적용하는 데 나타나는 이 문제점들을 해소하기 위해 새로운 방법을 제시한다. 사전 지식으로, 간단한 언어 모델로부터 쉽게 생성된 결정트리(decision tree)에서 자동적으로 만들어진 규칙을 사용한다. 따라서, 제시된 방법에서의 최대 엔트로피 모델은 결정트리를 보강하는 방법으로 간주될 수 있다. 계산론적 복잡도를 줄이기 위해서, 최대 엔트로피 모델을 학습할 때 일종의 능동 학습(active learning) 방법을 사용한다. 전체 학습 데이터가 아닌 일부분만을 사용함으로써 계산 비용은 크게 줄어 들 수 있다. 실험 결과, 제시된 방법으로 결정트리의 오류의 수가 반으로 줄었다. 대부분의 자연언어 데이터가 매우 불균형을 이루므로, 학습된 모델을 부스팅(boosting)으로 강화할 수 있다. 부스팅을 한 후 제시된 방법은 전문가에 의해 선택된 자질로 학습된 최대 엔트로피 모델보다 졸은 성능을 보이며 지금까지 보고된 기계 학습 알고리즘 중 가장 성능이 좋은 방법과 비슷한 성능을 보인다 텍스트 단위화가 일반적으로 전체 구문분석의 전 단계이고 이 단계에서의 오류가 다음 단계에서 복구될 수 없으므로 이 성능은 텍스트 단위화에서 매우 의미가 길다.
지금까지 한국어 품사 부착을 위해 다양한 모델이 제안되었고 95% 이상의 높은 정확도를 보여주고 있다. 그러나 4-5%의 오류는 실제 응용 분야에서 많은 문제를 야기시킬 수 있다. 이러한 오류를 최소화하기 위해서는 오류를 분석하고 이를 수정할 수 있는 규칙들을 학습하여 재사용하는 방범이 효과적이다. 오류 수정 규칙을 학습하기 위한 기존의 방법들은 수동학습 방법과 자동 학습 방법으로 나눌 수 있다 수동 학습 방법은 많은 비용이 요구되는 단점이 있다. 자동 학습 방법의 경우 모두 변형규칙 기반 접근 방법을 사용하였는데 어휘 정보를 고려할 경우 탐색 공간과 규칙 적용 시간이 매우 크다는 단점이 있다. 따라서 본 논문에서는 초기 모델에 대한 오류 수정 규칙을 효율적으로 학습하기 위한 새로운 방법으로 결정 트리 학습 방법을 확장한 통계적 결정 그래프 학습 방법을 제안한다. 제안된 방법으로 두 가지 실험을 수행하였다. 초기 모델의 정확도가 높고 말뭉치의 크기가 작은 첫 번째 실험의 경우 초기 모델의 정확도 95.48%를 97.37%까지 향상시킬 수 있었다. 초기 모델의 정확도가 낮고 말뭉치 크기가 큰 두 번째 실험의 경우 초기 모델의 정확도 87.22%를 95.59%로 향상시켰다. 또한 실험을 통해 결정 트리 학습 방법에 비해 통계적 결정 그래프 학습 방법이 더욱 효과적임을 알 수 있었다.
본 논문은 손실값을 포함하는 불완전한 데이터를 처리하는 방법에 대해 논한다. 손실값을 최적으로 처리한다는 것은 학습 데이터가 가지고 있는 정보들에서 본래값과 가장 근사한 추정치를 구하고, 이 값으로 손실값을 대치하는 것이다. 이것을 실현하기 위한 방안으로 분류기가 정보를 분류하는 과정에서 완성되어가는 결정트리를 이용한다. 다시말해 이 결정트리는 전체 학습 데이터 중에서 손실값을 포함하지 않는 완전한 정보만을 C4.5 분류기에 입력하여 학습하는 과정에서 얻어진다. 이 결정트리의 노드들은 분류 변수의 정보를 가지는데, 루트에 가까운 상위 노드일수록 많은 정보를 포함하게 되고 말단 노드에서는 루트로부터의 경로를 통해 분류 영역을 형성하게 된다. 또한 각 영역에는 분류된 데이터 사건들의 평균이 기록된다. 손실값을 포함하는 사건들은 이러한 결정트리에 입력되어 각 노드의 정보에 따라 순회과정을 통해 사건과 가장 근접한 영역을 찾아가게 된다. 이 영역에 기록된 평균값을 손실값의 추정치로 간주하고, 보상 과정은 완성된다.
학습관리시스템의 도입으로 학습자들은 다양한 형태로 학습하게 되고 데이터를 남기게 된다. 교육데이터마이닝은 다양한 형태로 기록되는 교육 데이터를 분석해서 유의미한 정보를 찾아 내는 방법이다. 교육데이터마이님을 활용하면 학생 개인의 학습성과 향상에 도움을 주거나 학습성과 예측 결과를 참고하여 부족한 부분을 지원해 줄 수도 있다. 기존 연구에서는 학습자의 행동 영역 특징이 학습성과에 영향을 끼친다는 것을 검증하기 위하여 나이브 베이즈, 의사결정트리, 신경망 기계학습알고리즘으로 데이터를 분석했다. 따라서 본 연구에서는 기존 연구를 확장하여 학습자의 행동 영역 특징이 학부모 학교 만족도에 영향을 끼치는지 여부를 확인하는 실험을 수행했으며 kNN, 의사결정트리, SVM 기계학습 알고리즘으로 데이터를 분석하였다. 분석결과 학습자의 행동 영역 특정이 학부모 학교 만족도에 영향을 미치는 것을 확인했다.
결정 트리는 큰 가설 공간을 가지고 있어 유연하고 강인한 성능을 지닐 수 있다. 하지만 결정트리가 학습 데이터에 지나치게 적응되는 경향이 있다. 학습데이터에 과도하게 적응되는 경향을 없애기 위해 몇몇 가지치기 알고리즘이 개발되었다. 하지만, 데이터가 속성 축에 평행하지 않아서 오는 공간 낭비의 문제는 이러한 방법으로 해결할 수 없다. 따라서 본 논문에서는 다변수 노드를 사용한 선형 분류기를 이용하여 이러한 문제점을 해결하는 방법을 제시하였으며, 결정트리의 성능을 높이고자 지지 벡터 머신을 도입하였다(SVMDT). 본 논문에서 제시한 알고리즘은 세 가지 부분으로 이루어졌다. 첫째로, 각 노드에서 사용할 속성을 선택하는 부분과 둘째로, ID3를 이 목적에 맞게 바꾼 알고리즘과 마지막으로 기본적인 형태의 가지치기 알고리즘을 개발하였다. UCI 데이터 셋을 이용하여 OC1, C4.5, SVM과 비교한 결과, SVMDT는 개선된 결과를 보였다.
침입 탐지 시스템에 의해서 DDoS와 같은 공격을 탐지되며 조기에 차단할 수 있다. 의사 결정 트리를 이용하여 DDoS 공격 트래픽을 분석하였다. 중요도가 높은 결정적인 속성(Feature)을 찾아서 해당 속성에 대해서만 의사 결정 트리를 진행하여 정확도를 확인하였다. 그리고 위양성 및 위음성 트래픽의 내용을 분석하였다. 그 결과 하나의 속성은 98%, 두 가지 속성은 99.8%의 정확도를 각각 나타냈다.
본 논문에서는 뇌 자기공명영상을 분류하기 위하여 결정트리 알고리즘을 2 단계로 적용하는 영상 분류 시스템을 제안한다. 영상으로부터 얻을 수 있는 정보에는 두 종류가 있다. 하나는 크기, 색상, 질감, 윤곽선 등 영상으로부터 직접 얻을 수 있는 하위레벨 특징들이고, 다른 하나는 특정 객체의 존재 유무, 여러 부위 사이의 공간적 관계 등 분할된 영상들에 대한 해석을 통해서 얻을 수 있는 상위레벨 특징들이다. 의미에 따라 영상을 분류하기 위해서는 상위레벨 특징들을 기반으로 학습 및 분류가 수행되어야 한다. 제안하는 시스템에서는 결정트리 학습을 각각의 레벨에 개별적으로 적용하며, 하위레벨 분류 결과를 이용하여 상위레벨의 특징을 추출한다. 종양이 있는 뇌 자기공명영상 집합에 대하여 분류 실험을 수행하였으며, 몇 가지 실험 결과를 통해 제안된 시스템의 효과를 확인하였다.
한국어는 격조사에 의해 구문 역할이 결정되고 하나의 조사가 여러 개의 의미를 가지는 특징이 있다. 특히, 부사격 조사는 그 의미의 다양성으로 인해서 한영 기계 번역에서의 조사 번역을 어렵게 만든다. 본 논문에서는 부사격 조사가 가질 수 있는 의미격을 24개의 클래스로 분류한 후, 50만 어절 크기의 말뭉치에서 추출한 학습 예제와 결정 트리 추론(decision tree induction)을 통해 부사격 조사의 의미격 결정 규칙을 학습하였다. 결정 트리 추론 시 나타날 수 있는 학습 예제의 부족 문제는 단어 클래스를 사용함으로써 해결하였다. 실험 결과, 6개의 부사격 조사에 대해서 평균적으로 76.2%의 정확도를 보였으며, 이는 가장 많이 나타나는 의미격을 부사격 조사의 의미격으로 결정하는 방법에 비해 26.0%의 정확도 향상을 의미한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.