• 제목/요약/키워드: 결정트리분류기

검색결과 52건 처리시간 0.044초

데이터 마이닝을 위한 LVQ 기반 신경 트리 분류기 (Neural Tree Classifier based on LVQ for Data Mining)

  • 김세현;김은주;이일병
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 가을 학술발표논문집 Vol.28 No.2 (2)
    • /
    • pp.157-159
    • /
    • 2001
  • 신경 트리는 신경망과 결정 트리의 구조를 결합한 형태의 분류기로서 비선형적 결정 경계 형성이 가능하며 기존 신경망에 비해 학습, 출력시 계산량이 적다는 장점을 갖는다. 본 논문에서는 신경 트리의 노드를 구성하는 신경망을 학습하기 위하여 기존의 방법들과는 달리 교사 학습 방법인 LVQ3 알고리즘을 사용하는 신경 트리 분류기를 제안한다. 학습 과정을 통해 생성된 트리는 오인식율 추정을 이용한 가지치기를 통하여 효율적인 트리로 재구성된다. 제안하는 방법은 실제 데이터 집합들을 이용한 실험을 통하여 그 성능을 검증하였다.

  • PDF

결정트리를 이용하는 불완전한 데이터 처리기법 (Incomplete data handling technique using decision trees)

  • 이종찬
    • 한국융합학회논문지
    • /
    • 제12권8호
    • /
    • pp.39-45
    • /
    • 2021
  • 본 논문은 손실값을 포함하는 불완전한 데이터를 처리하는 방법에 대해 논한다. 손실값을 최적으로 처리한다는 것은 학습 데이터가 가지고 있는 정보들에서 본래값과 가장 근사한 추정치를 구하고, 이 값으로 손실값을 대치하는 것이다. 이것을 실현하기 위한 방안으로 분류기가 정보를 분류하는 과정에서 완성되어가는 결정트리를 이용한다. 다시말해 이 결정트리는 전체 학습 데이터 중에서 손실값을 포함하지 않는 완전한 정보만을 C4.5 분류기에 입력하여 학습하는 과정에서 얻어진다. 이 결정트리의 노드들은 분류 변수의 정보를 가지는데, 루트에 가까운 상위 노드일수록 많은 정보를 포함하게 되고 말단 노드에서는 루트로부터의 경로를 통해 분류 영역을 형성하게 된다. 또한 각 영역에는 분류된 데이터 사건들의 평균이 기록된다. 손실값을 포함하는 사건들은 이러한 결정트리에 입력되어 각 노드의 정보에 따라 순회과정을 통해 사건과 가장 근접한 영역을 찾아가게 된다. 이 영역에 기록된 평균값을 손실값의 추정치로 간주하고, 보상 과정은 완성된다.

구조적응 자기구성 지도를 이용한 인간 행동의 성별 분류 (Gender Classification of Human Behaviors Using Structure Adaptive Self-organizing Map)

  • 류중원;조성배
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 봄 학술발표논문집 Vol.28 No.1 (B)
    • /
    • pp.298-300
    • /
    • 2001
  • 본 논문에서는 구조적응 자기구성 지도 모델을 사용하여 인간 행동의 성별을 분류하는 인식기를 제안하였다. 26명의 사람이 '화난 상태' 혹은 '보통 상태'의 두가지 정서 하에서 '문 두드리기', '손 흔들기', '물건 들어올리기'의 세가지 동작을 수행하는 동안, 행위자 관절점의 속도나 위치 정보로부터 성별을 분류하였다. 또한 SASOM의 성능 비교 분석을 위하여 전통적인 SOM, 다층 퍼셉트론과 거의 두 가지 결합 모델, SASOM와 의사결정트리 결합 모델, 단일 의사 결정트리, $textsc{k}$-최근접 이웃 등의 인식기를 구현하여 성능을 비교분석 하였다. 실험 결과 SASOM 분류기가 가장 높은 이식률을 보였으며 분류기로서 유용함을 알 수 있었다.

  • PDF

중요한 이벤트만을 검색함으로써 분류기의 최적 성능을 찾는 방법 (A method of searching the optimum performance of a classifier by testing only the significant events)

  • 김동희;이원돈
    • 한국정보통신학회논문지
    • /
    • 제18권6호
    • /
    • pp.1275-1282
    • /
    • 2014
  • 유비쿼터스 환경에서는 수많은 정보들이 존재한다. 하지만 이 정보들은 너무 광범위하기 때문에 이로부터 필요에 따라 적절하게 사용 할 수 있는 정보를 얻기란 쉽지가 않다. 이로 인해 의사 결정 트리 알고리즘은 데이터 마이닝 분야 또는 기계 학습 시스템 분야에서 매우 유용하게 사용된다. 왜냐하면 빠르고 정확하게 정보를 분류하여 좋은 결과를 도출하기 때문이다. 하지만 때때로 의사 결정 트리가 매우 작은 데이터나 노이즈 데이터로 구성된 리프 노드들로 인해 좋은 정보를 제공하지 못하는 경우가 있다. 이 논문은 이러한 분류 문제를 해결하기 위해 분류기, UChoo를 사용할 것이고 노이즈 또는 노이즈 형태로 보이는 리프들을 제외하고 오직 중요한 리프들만을 검사하는 효과적인 방법을 제안한다. 그리고 실험을 통하여 의사 결정시 오직 중요한 리프들만을 의사 결정 트리에서 선택함으로써 효과적으로 에러가 줄어드는 것을 보일 것이다.

개선된 휴리스틱 규칙 및 의사 결정 트리 분석을 이용한 P2P 트래픽 분류 기법 (P2P Traffic Classification using Advanced Heuristic Rules and Analysis of Decision Tree Algorithms)

  • 예우지엔;조경산
    • 한국컴퓨터정보학회논문지
    • /
    • 제19권3호
    • /
    • pp.45-54
    • /
    • 2014
  • 본 논문에서는 기존 기법들의 제한점을 개선하기 위해 휴리스틱 규칙 및 기계학습 분석 결과를 이용한 두 단계의 P2P 트래픽 분류 기법을 제안한다. 첫 번째 단계는 패킷 레벨의 시그니처 기반 분류기이고, 두 번째 단계는 플로우 레벨에서 수행되는 패턴 휴리스틱 규칙 및 통계 기반 분류기이다. 제안된 패턴 휴리스틱 규칙은 분류의 정확도를 높이고 통계 기반 분류기가 처리할 트래픽의 양을 줄일 수 있다. 다양한 의사 결정 트리 알고리즘의 분석을 기반으로 통계 기반 분류기는 가장 효율적인 REPTree로 구현하고, 앙상블 알고리즘을 통해 통계 기반 분류기의 성능을 개선한다. 실제 환경의 데이터 집합을 이용한 검증 분석을 통해, 본 제안 기법이 기존 기법에 비해 높은 정확도와 낮은 과부하를 제공함을 제시한다.

다중 추상화 수준의 데이터를 위한 결정 트리 분류기 (Decision Tree Classifier for Multiple Abstraction Levels of Data)

  • 정민아;이도헌
    • 정보처리학회논문지D
    • /
    • 제10D권1호
    • /
    • pp.23-32
    • /
    • 2003
  • 대규모 데이터 마이닝 환경에서는 이질적인 데이터베이스 혹은 파일 시스템으로부터 분석 대상 데이터를 수집하는 경우가 일반적이므로, 수집된 데이터가 서로 다른 추상화 수준(abstraction level)으로 표현되기 마련이다, 본 논문에서는 기존의 결정 트리(decision tree)를 서로 다른 추상화 수준으로 표현된 데이터에 적용할 때, 분류상 모순이 일어날 수 있음을 보이고, 그에 대한 해결방안을 제시한다. 제안하는 방법은 데이터 간에 존재하는 일반화/세분화 관련성을 결정 트리의 구축 단계는 물론, 클래스 할당 단계에도 반영하여 데이터간의 의미적 연관성을 효과적으로 활용할 수 있도록 한다. 아울러 실제 데이터에 기반을 둔 실험을 통해, 제안한 방법이 기존 방법보다 분류 오류율을 현저히 줄일 수 있음을 보인다.

다변량 퍼지 의사결정트리의 적응 기법 (Adaptation method of multivariate fuzzy decision tree )

  • 전문진
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2008년도 추계학술발표대회
    • /
    • pp.17-18
    • /
    • 2008
  • 다변량 퍼지 의사결정트리(이하 MFDT)는 학습 모델의 구조가 간소하고 분류율이 높다는 장점 때문에 일반 퍼지 의사결정트리를 대신해 손동작 인식 시스템의 분류기로 사용되었다. 다양한 사용자의 손동작 특성을 분류하기 위해 여러 개의 인식 모델을 만들고 새로운 사용자에게 가장 적합한 모델을 선택해 사용하는 모델 선택 기법도 손동작 인식에 적용되었다. 모델 선택 과정을 통해 선택된 모델은 기존 모델 중에서 새로운 사용자의 특성에 가장 가깝지만 해당 사용자에 최적화된 모델이라고는 할 수 없다. 이 논문에서는 MFDT 모델을 새로 입력된 데이터를 이용해 적응시키는 방법을 설명하고 실험 결과를 통해 적응 성능을 검증한다.

신경망 앙상블을 이용한 인간 성별 인식 (Human Gender Recognition Using Neural Network Ensembles)

  • 류중원;조성배
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2001년도 추계학술발표논문집 (상)
    • /
    • pp.555-558
    • /
    • 2001
  • 본 논문에서는 인간 행동의 성별 인식문제를 해결하기 위해 여러 개의 전문가(expert) 신경망의 앙상블로 이루어진 결합 신경망 분류기를 제안한다. 하나는 여러 개의 modular 다층퍼셉트론을 계층형으로 결합한 모텔이고, 다른 하나는 modular 다층퍼셉트론들의 출력값을 의사결정트리로 결합하는 모델이다. 데이터 베이스는 남녀 각 13 명의 데이터로 이루어져 있고, 문 두드리기, 손 흔들기, 물건 들어올리기의 세 가지 동작을, 보통 상태 혹은 화난 상태하에서 10 회씩 반복 수행하여 저장하였다. 행위자의 움직임은 몸에 부착된 6 개의 적외선 센서를 사용하여 기록 되었으며, 2 차원 혹은 3 차원 속도 및 좌표가 그 특징값으로 사용되었다. 앙상블 분류기의 성능을 비교하기 위하여 단일 다층퍼셉트론, 의사결정트리, 자기구성지도 및 support vector machine 을 사용한 실험 결과를 보였다. 실험 결과, 신경망 앙상블 모델이 다른 전통적인 분류기 및 사람에 비하여 훨씬 우수한 성능을 보였음을 알 수 있었다.

  • PDF

전역적 범주화를 이용한 대용량 데이터를 위한 순차적 결정 트리 분류기 (Incremental Decision Tree Classifier Using Global Discretization For Large Dataset)

  • 한경식;이수원
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 가을 학술발표논문집 Vol.29 No.2 (2)
    • /
    • pp.352-354
    • /
    • 2002
  • 최근 들어, 대용량의 데이터를 처리할 수 있는 결정 트리 생성 방법에 많은 관심이 집중되고 있다. 그러나, 대용량 데이터를 위한 대부분의 알고리즘은 일괄처리 방식으로 데이터를 처리하기 때문에 새로운 예제가 추가되면 이 예제를 반영한 결정 트리를 생성하기 위해 처음부터 다시 재생성해야 한다. 이러한 재생성에 따른 비용문제에 보다 효율적인 접근 방법은 결정 트리를 순차적으로 생성하는 접근 방법이다. 대표적인 알고리즘으로 BOAT와 ITI를 들 수 있다. BOAT는 대용량 데이터를 지원하는 순차적 알고리즘이 지만 분할 포인트가 노드에서 유지하는 신뢰구간을 넘어서는 경우와 분할 변수가 변경되면 그에 영향을 받는 부분은 다시 생성해야 한다는 문제점을 안고 있고, 이에 반해 ITI는 분할 포인트 변경과 분할 변수 변경을 효율적으로 처리하지만 대용량 데이터를 처리하지 못해 오늘날의 순차적인 트리 생성 기법으로 적합하지 못하다. 본 논문은 ITI의 기본적인 트리 재구조화 알고리즘을 기반으로 하여 대용량 데이터를 처리하지 못하는 ITI의 한계점을 극복하기 위해 전역적 범주화 기법을 이용한 접근방법을 제안한다.

  • PDF

메타데이터를 활용한 조사자료의 문서범주화에 관한 연구 (An Exploratory Study on Survey Data Categorization using DDI metadata)

  • 박자현;송민
    • 한국정보관리학회:학술대회논문집
    • /
    • 한국정보관리학회 2012년도 제19회 학술대회 논문집
    • /
    • pp.73-76
    • /
    • 2012
  • 본 연구는 DDI 메타데이터를 활용하여 귀납적 학습모델(supervised learning model)의 문서범주화 실험을 수행함으로써 조사자료의 체계적이고 효율적인 분류작업을 설계하는데 그 목적이 있다. 구체적으로 조사자료의 DDI 메타데이터를 대상으로 단순 TF 가중치, TF-IDF 가중치, Okapi TF 가중치에 따른 나이브 베이즈(Naive Bayes), kNN(k nearest neighbor), 결정트리(Decision tree) 분류기의 성능비교 실험을 하였다. 그 결과, 나이브 베이즈가 가장 좋은 성능을 보였으며, 단순 TF 가중치와 TF-IDF 가중치는 나이브 베이즈, kNN, 결정트리 분류기에서 동일한 성능을 보였으나, Okapi TF 가중치의 경우 나이브 베이즈에서 가장 좋은 성능을 보였다.

  • PDF