• Title/Summary/Keyword: 결정소성학

Search Result 178, Processing Time 0.028 seconds

CO oxidation Reaction over copper metal oxide catalysts (구리복합산화물 촉매상에서 일산화탄소의 산화반응)

  • Lee, Hak Beum;Koh, Hyoung Lim
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.129-135
    • /
    • 2016
  • CO oxidation was performed with Cu-Mn and Cu-Zn co-precipitated catalysts as differential precipitant, metal ratio and calcination temperature. The effects of differential metal mole ratio and calcination temperature in mixed metal oxide catalyst were investigated with CO oxidation reaction. Physiochemical properties were studied by XRD, $N_2$ sorption and SEM. 2Cu-1Mn with $Na_2CO_3$ catalyst calcined at $270^{\circ}C$ has a large surface area $43m^2/g$ and the best activity for CO oxidation. $Cu_{0.5}Mn_{2.5}O_4$ in XRD peak shows the lower activity than others. The catalytic activity over the catalyst calcined $270^{\circ}C$ displayed the highest conversion, and it was better activity comparing with Pt catalysts CO conversion.

Utilization of Fly Ash as a Source of Mineral Fertilizers -IV. Development of Slowly Released K Fertilizer (Fly Ash 비료화(肥料化) 연구(硏究) -IV. Fly Ash를 이용(利用)한 지효성(遲效性) 가리(加里) 비료(肥料) 개발(開發))

  • Shin, Jae-Sung;Seong, Ki-Seog;Choi, Du-Hoi
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.27 no.1
    • /
    • pp.10-14
    • /
    • 1994
  • The slowly released potassium fertilizer was developed by mixing fly ash with KOH, anthracite coal powder, KCI, $K_2CO_3$ and $Mg(OH)_2$ as the substances for accelerating calcination. Measuring proper ratios of raw materials, we found that the anthracite coal powder was 12 percent and $Mg(OH)_2$ was two to three percent. The optimal calcination temperature and time were proved to be $850^{\circ}C$ and 30 minutes, respectively, however, the trial product with lower temperature and shorter time in calcination had low quality. The K solubility of the product was very low compared to that of the KCl fertilizer.

  • PDF

Computer Simulation of Hemispherical Sheet Forming Process Using Crystal Plasticity (결정 소성학을 이용한 반구 박판 성형공정의 전산모사)

  • Shim, J.G.;Keum, Y.T.
    • Transactions of Materials Processing
    • /
    • v.16 no.4 s.94
    • /
    • pp.276-281
    • /
    • 2007
  • The hardening and the constitutive equation based on the crystal plasticity are introduced for the numerical simulation of hemispherical sheet metal forming. For calculating the deformation and the stress of the crystal, Taylor's model of the crystalline aggregate is employed. The hardening is evaluated by using the Taylor factor, the critical resolved shear stress of the slip system, and the sum of the crystallographic shears. During the hemispherical forming process, the texture of the sheet metal is evolved by the plastic deformation of the crystal. By calculating the Euler angles of the BCC sheet, the texture evolution of the sheet is traced during the forming process. Deformation texture of the BCC sheet is represented by using the pole figure. The comparison of the strain distribution and punch force in the hemispherical forming process between the prediction using crystal plasticity and experiment shows the verification of the crystal plasticity-based formulation and the accuracy of the hardening and constitutive equation obtained from the crystal plasticity.

Prediction of Texture Evolution in Equal Channel Angular Extrusion (ECAE) Using Rate-Independent Crystal Plasticity with Rigid-Plastic Finite Element Method (결정 소성학과 강소성 유한요소해석을 연계한 ECAE 공정에서의 변형 집합 조직 발달에 대한 연구)

  • Kim, Kyung-Jin;Yoon, Jeong-Whan;Yang, Dong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.11
    • /
    • pp.937-944
    • /
    • 2015
  • Recently, the change of mechanical properties and microstructural evolution during severe plastic deformation (SPD), such as Equal Channel Angular Extrusion (ECAE), has been the subject of intensive investigation because of the unique physical and mechanical properties of severely deformed materials. In this study, two types of ECAE processes were considered, dies with intersection angles ${\Phi}$ of $90^{\circ}$ and $120^{\circ}$, using experiments and simulations. The decoupled method, in which the rigid-plastic finite element method is incorporated with the rate-independent crystal plasticity model, was applied to predict the texture evolution in commercially pure aluminum during the ECAE processes with $120^{\circ}$ and $90^{\circ}$ dies. The simulated textures were compared with a measured texture via an EBSD OIM analysis. The comparison showed that the simulated textures generally were in good agreement with the experimentally measured texture.

Crystal development and growth mechanism by pretreatment process for zinc crystalline glaze (아연 결정유약 전처리 공정을 통한 결정생성 및 성장의 mechanism)

  • Lee, Chiyoun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.1
    • /
    • pp.34-41
    • /
    • 2017
  • In this study, the effect on the zinc nuclei crystallization caused by changes preprocessing of the zinc crystalline glaze preparation has been studied. The mechanism of the nuclei formation in the crystalline glaze and development of the nuclei by studying the preprocessing step was explained. The preprocessing step was improved by altering mixing process of the materials prior to sintering: number of sieving dispersion process and ultra-sonication prove tests with various duration of sonication. According to the result, the sieving and sonication of the starting materials facilitated the interface reactions of $ZnO-SiO_2$ from $680^{\circ}C$ where low temperature willemite is formulated, and altered Si bonding for the easier bonding between Zn-Si. In other words, solely sieving was enough to accelerate the formation of willemite in low temperature. When the particles were distributed evenly by sonication, the willemite formation was even more significant.

Experiments of electric furnace simulator for property prediction of the artificial lightweight aggregate sintered by rotary kiln (로타리킬른 소성 골재 물성예측을 위한 전기로 실험)

  • Ryu, Yug-Wang;Kim, Yoo-Taek
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.3
    • /
    • pp.125-130
    • /
    • 2008
  • If the properties of artificial lightweight aggregates produced by rotary kiln can be predicted by using a simulator equipped with a small electric furnace and a specially designed device for specimen movement, large amount of raw materials and plenty of test time can be saved to produce test products of lightweight aggregates. In this study a simulator for the accurate prediction of the artificial lightweight aggregates produced by rotary kiln was assembled by our own design and the properties of lightweight aggregates produced by both the simulator and rotary kiln were compared to speculate its usefulness. The average diameter of aggregates was 8 mm and atmosphere in the furnace was controlled by the amount of carbon powders. Specific gravity, absorption rate (%), black-core area in the cross-sectional view of both aggregates were measured and compared. Unlike oxydizing atmosphere, both specific gravity and absorption rate of the aggregates sintered at reducing atmosphere were increased with increasing carbon addition. It is concluded that the sintering atmosphere was the closest to that of the rotary kiln when the carbon addition was 0.7 g to make a reducing atmosphere in the furnace and the properties of both agreggates was also similar to each other.

Properties of artificial aggregates of coal bottom ash-dredged soil system added with waste glass (폐유리가 첨가된 석탄바닥재-준설토 계 인공골재의 특성)

  • Jo, Sinae;Kang, Seunggu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.3
    • /
    • pp.146-151
    • /
    • 2013
  • In this study, the effect of addition of waste glassy slag produced from recycling of spent catalyst (denoted as waste glass hereafter) on the physical properties of artificial aggregates made of coal bottom ash and dredged soil (7 : 3 by weight base) was evaluated. Especially, the bloating behavior of artificial aggregates was analyzed by performing the relation study between the apparent density, water absorption and microstructure. The apparent density of artificial aggregates increased slightly with sintering temperature at $1050{\sim}1150^{\circ}C$, but decreased above $1150^{\circ}C$ showing bloating phenomenon. The bloating behavior of artificial aggregates was decreased so the apparent density increased with amount of waste glass added. Also, the water absorption of artificial aggregates decreased with sintering temperature. Above $1200^{\circ}C$, big fissure and much liquid were formed at the surface of artificial aggregates and these phenomena could be suppressed by increasing amount of waste glass added. The artificial aggregates fabricated in this study had an apparent density of 1.1~1.6 and water absorption of 8~22 % which meet KS requirements for the artificial lightweight aggregates.

Effects of rolling condition on recrystalized structure and strength in over aged 7075 AI alloy (과시효처리된 7075 AI합금에 있어서 압연조건이 재결정조직과 강도에 미치는 영향)

  • Kim, Chang-Ju;Kim, Hyeong-Uk
    • Korean Journal of Materials Research
    • /
    • v.4 no.2
    • /
    • pp.241-249
    • /
    • 1994
  • We studied on the effects of hot-worm rolling on recrystalized structures and tensile strength in over-aged 7075 A1 alloy, to develop the process for improving properties. It showed more clear effect of the grain refinement with over-aging before plastic deformation. That means, the coarse precipitates from over-aging play a roll as nucleation sites in the course of recrystallization. And on this study, the relations between yield strength and grain size was not satisfied with Hall-Petch equation because of the elongated structure, but the yield strength is proportional to aspect ratio of grains. In TMT process for improving strength and toughness, the worm working is available for increase of those properties than cold working.

  • PDF

A study of sintering behavior of spray coating in CaO-Al2O3-SiO2 glasses on Al2O3 substrate (CaO-Al2O3-SiO2 계 유리 스프레이 코팅막의 소성 거동에 대한 연구)

  • Na, Hyein;Park, Jewon;Park, Jae-Hyuk;Kim, Dae-Gun;Choi, Sung-Churl;Kim, Hyeong-Jun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.6
    • /
    • pp.298-307
    • /
    • 2019
  • Two types of CaO-Al2O3-SiO2 (CAS) glass powder applied spray coating on the surface of sintered Al2O3 were researched for sintering behavior; (1) Si-rich, glass containing high content SiO2, (2) Ca-rich, containing high content CaO. Foaming of bubbles remaining inside the Ca-rich glass was produced at a viscosity of approximately 107~109 poise, resulting in decreasing shrinkage (interfering with sintering) and increasing surface roughness. In case of Si-rich glass, there was no serious foaming bubbles phenomenon like Ca-rich below 1000℃, however cristobalite crystals with low density occurred at 1200℃ and then produced re-foaming of bubbles, resulting in abnormal sintering behavior. These phenomenon is considered to be a decrease in viscosity due to an increase in the Ca content of the glass according to the formation of low-density cristobalite crystals. Therefore, in case of CAS glass, it is necessary to consider the increase of surface roughness and the sintering interference because of foaming bubbles phenomenon at low temperature sintering. Especially, when containing high SiO2 content, abnormal foaming phenomenon due to crystallization at high temperature should be predicted.