전력수요를 예측할 경우 가장 중요한 문제 중의 하나가 특수일 부하의 처리문제이다. 따라서 본 연구에서 길고(구정, 추석) 짧은(식목일, 현충일 등) 특수일 피크 부하를 신경회로망과 회귀모형을 이용하여 예측하는 방법을 제시한다. 신경회로망 모형의 특수일 부하 처리는 패턴 변환비를 이용하며, 4차의 직교 다항 회귀모형은 과거의 10년 (1985∼1994)간의 특수일 피크부하 자료를 이용하여 길고 짧은 특수일 부하를 예측한다. 특수일 피크 부하를 예측한 결과, 신경회로망 모형의 주간 평균 예측 오차율과 직교 다항 회귀모형의 예측 오차율을 분석한 결과 1∼2[%]대로 두 모형 모두 양호한 결과를 얻었다. 또한 4차의 직교 다항 회귀 모형의 수정결정계수 및 F 검정을 분석한 결과 구성한 예측 모형의 타당성을 확인하였다. 두 모형의 특수일 부하를 예측한 결과를 비교해 보면 긴 특수일 부하를 예측할 때는 패턴 변환비를 이용한 신경회로망 모형이 보다 더 효과적이었고, 짧은 특수일 부하를 예측할 경우에는 두 방법 모두 유효하였다.
본 연구에서는 변압기의 권선간 전계 및 절연안전율 예측알고리즘을 개발하였으며, 이를 활용하여 극초고압 변압기의 절연구조개선 연구를 수행하였다. 개발된 알고리즘을 사용하면 한 번의 기본모델의 수치해석 결과만을 이용하여 다양한 권선간 거리 및 고체절연물의 개수 변화에 따른 전계 및 절연안전율의 예측이 가능하다. 본 알고리즘을 극초고압 변압기 주권선부 개선에 적용시킨 결과, 권선간 고체 절연물 개수를 조절하면 절연신뢰성 저하없이 주권선부 거리를 단축시킬 수 있음을 확인하였다. 또한, 본 예측 알고리즘의 활용가능성을 검증하고자 개선 모델의 절연안전율을 수치해석적 방법으로 계산하여 이를 예측 결과와 비교하였다. 그 결과, 본 예측 알고리즘으로 계산된 결과는 수치해석적 방법에 의한 결과에 비해 약 $1{\sim}2%$ 정도의 작은 차이가 발생하는 것으로 확인되었다. 따라서 본 연구를 통하여 개발된 전계분포 및 절연안전율 예측기법을 실제 설계에 적용할 수 있을 것으로 판단된다.
기계번역 품질 예측 (Quality Estimation, QE)은 정답 문장에 대한 참조없이 소스 문장과 기계번역 결과를 통해 기계번역 결과에 대한 품질을 수준별 주석으로 나타내주는 태스크이며, 다양한 활용도가 있다는 점에서 꾸준히 연구가 수행되고 있다. 그러나 QE 모델 학습을 위한 데이터 구성 시 기계번역 결과에 대해 번역 전문가가 교정한 문장이 필요한데, 이를 제작하는 과정에서 상당한 인건비와 시간 비용이 발생하는 한계가 있다. 본 논문에서는 번역 전문가 없이 병렬 또는 단일 말뭉치와 기계번역기만을 활용하여 자동화된 방식으로 한국어-영어 합성 QE 데이터를 구축하며, 최초로 단어 수준의 한국어-영어 기계번역 결과 품질 예측 모델을 제작하였다. QE 모델 제작 시에는 Cross-lingual language model (XLM), XLM-RoBERTa (XLM-R), multilingual BART (mBART)와 같은 다언어모델들을 활용하여 비교 실험을 수행했다. 또한 기계번역 결과에 대한 품질 예측의 객관성을 검증하고자 구글, 아마존, 마이크로소프트, 시스트란의 번역기를 활용하여 모델 평가를 진행했다. 실험 결과 XLM-R을 활용하여 미세조정학습한 QE 모델이 가장 좋은 성능을 보였으며, 품질 예측의 객관성을 확보함으로써 QE의 다양한 장점들을 한국어-영어 기계번역에서도 활용할 수 있도록 했다.
본 연구는 내수침수에 의한 침수면적 예측을 위한 강우특성과 1차원 유출모형의 유출특성 및 월류특성 자료를 이용한 침수면적의 정확도를 다양한 호우사상을 적용하여 분석하였다. 국내에서 침수 취약지역 예측을 위해서 강우-유출모형의 유출량 예측 즉 홍수추적을 중심으로 이루어지고 있는 실정이다. 기존 모형이 홍수추적을 중심으로 이루어진 것은 대유역의 경우에 XP-SWMM 모형과 같은 정밀모형을 이용할 경우 긴 모의시간으로 인하여 예경보 발령을 위한 골든타임 확보가 어려우며, 홍수량 예측을 통하여 예측된 침수피해에 대한 정밀도 확보가 어렵기 때문에 실제 상황에 적용하기 어려운 문제점이 발생하고 있다. 컴퓨터 하드웨어의 발전에 따른 연산속도의 증가와 빅데이터 처리기술을 발전에 따라서 10년 전과 비교하여 2차원 침수면적 예측시간이 단축되기는 하였지만, 실제 침수면적 예측에 적용하기는 어려운 실정이다. 따라서, 모의시간이 짧은 1차원 강우-유출모형, 1차원 도시유출모형을 이용한 침수면적 예측방법에 대하여 연구하였다. 홍수피해 예측을 위하여 다양한 수문학적 인자의 영향 분석을 위해서 XP-SWMM 모형의 다양한 형태의 강우입력자료에 따른 1차원 유출 모의결과와 2차원 지표류 모의결과를 이용하여, 2차원 침수면적 예측결과를 추정하기 위한 수문학적 인자의 적용방법에 대하여 분석하였다. 모의시간이 짧은 강우-유출모형과 1차원 도시유출모형을 이용하여 도출한 수문학적 인자를 이용한 침수면적의 추정방법을 분석을 비교분석함으로써 침수면적 예측 시스템 구축방안에 대하여 구체적인 수문학적 인자들 생성을 위한 단계적 모형 적용방안 수립을 위한 자료로 활용할 수 있을 것이다.
와이드 이슈 슈퍼스칼라 프로세서에서 값 예측기는 한 명령어의 결과를 미리 예측하여 명령들 간의 데이터 종속관계를 극복하고 실행함으로써 명령어 수준 병렬성(Instruction Level Parallesim ILP)을 향상시키는 기법이다. 본 논문에서는 명령어 수준 병렬성을 이용하여 성능을 향상시키기 위하여 데이터 값을 미리 예측하여 병렬로 이슈하고 수행하는 값 예측기의 성능을 비교분석 한다. 먼저 값 예측기 종류별로 성능을 측정한다 그리고 테이블의 갱신시점, 트레이스 캐시 유무 및 명령윈도우 크기에 따른 값 예측기의 성능영향을 평가분석 한다. 성능분석 결과 최근 값 예측기가 간소한 하드웨어 구성에도 불구하고 우수한 성능을 보였다. 그리고 예측테이블 갱신시점과 트레이스캐시의 사용이 값 예측기의 성능향상에 영향을 주었다.
자료기반 수문예측 모형은 서로 자기상관이 다른 자료계열에 대해 예측결과만으로 모형의 성능에 대한 상대비교가 어렵다. 그러나 관측치와 예측치간의 평균 오차만을 기준으로 판단하는 기존의 모형 성능평가 기법은 대부분 이러한 자료기반 예측모형의 특성을 고려하지 못하고 있다. 따라서 본 논문에서는 자료기반 수문 예측모형의 성능을 보다 객관적으로 평가할 수 있는 새로운 모형 성능평가 기법인 상대 상관계수(Relative Correlation Coefficient; RCC) 제시하였다. RCC는 자기상관계수에 대한 관측치와 예측치간의 상관계수의 비로 산정되며, 자기상관정도에 따라 예측성능의 결과가 달라진다. 본 논문에서는 다양한 자기상관을 가지는 선형, 비선형 자료계열에 대해 자료기반 수문모형을 적용하여 기존 모형평가 기법의 한계를 제시하였다. 그리고 기존의 성능평가 기법과 RCC를 비교분석하여 자료기반 수문예측모형의 성능평가에 있어 RCC가 보다 객관적이고 일관성 있는 성능평가가 가능함을 보였다.
최근 일본의 설계규정(설계기준 내 재료모델)은 전 세계에서 수집된 실험 결과들을 바탕으로 개발된 것으로, 세계 최고 수준의 예측 방법으로 알려져 있다. 그럼에도 불구하고 장기간 관측된 실제 교량의 처짐은 예측결과와 많은 차이를 나타내고 있다. 이 논문에서는 콘크리트의 시간의 존적 거동에 대한 일본 설계규정의 주요 변천 과정을 소개하고, 실제 장기거동과 예측결과가 큰 차이를 보이는 원인에 대한 논의가 이루어질 것이다. 또한 내구성이 높고 경제적인 콘크리트 구조물 건설을 위한 앞으로의 연구방향이 제시될 것이다.
본 연구의 목적은 원자력 배관용 스테인레스강의 J-R곡선을 예측하기 위한 2가지 방법 올 제시하는 것이다. 첫 번째 방법에서는 균열길이/시편폭 비를 변수로 한 탄소성 유한요소해석을 수행하여 파괴변형률에 근거한 P-$\delta$곡선을 얻고, 이 결과로부터 일반궤적법을 응용하여 J-R곡선을 구하였다. 두 번째 방법에서는 $\sigma$-$\varepsilon$곡선과 J-R곡선의 상관관계를 통계처리하여 응력-변형률시험결과로부터 J-R곡선을 예측할 수 있는 실험식을 제시하였다. 본 연구에서 제시한 방법들을 이용하여 구한 예측결과는 실험결과와 대체로 잘 일치하였다.
본 연구는 세입증가율 예측을 위해 사용되는 각종 세수추계모형의 예측능력을 상호비교하는 데 목적이 있다. 본 연구에서 고려하는 세수추계 방식은 네 가지이다. 첫째는 단순 ECM 모형으로서 오차수정모형(error correction model)을 각각의 세목에 적용하여 세수를 예측하는 것이다. 둘째는 SUR-ECM 모형으로서 단순 ECM 모형의 개별 회귀방정식을 통합하여 SUR(Seemingly Unrelated Regression) 방식으로 추정한 후 이를 이용하여 세수를 예측하는 것이다. 셋째와 넷째는 흔히 사용되는 탄성치 방식으로서, 과거의 연도별 탄성치를 5년간 또는 10년간 평균하여 이를 바탕으로 향후의 세수를 예측하는 것이다. 이러한 모형비교를 통해 얻은 결과는 다음과 같이 요약될 수 있다. 첫째, 단순 ECM 모형과 5년 평균 탄성치 모형은 예측력에 있어 큰 차이가 없다. 둘째, SUR-ECM 모형과 10년 평균 탄성치 모형은 예측력에 있어 큰 차이가 없다. 셋째, 단순 ECM 모형보다는 SUR-ECM 모형의 예측력이 높으며, 5년 평균 탄성치 모형보다는 10년 평균 탄성치 모형의 예측력이 높다. 넷째, 어느 경우에든 예측 오차가 상당히 크고 이러한 오차는 예측시계가 넓어질수록 커진다. 예를 들어, 5년 후의 세수에 대한 예측치는 평균적으로 오차의 절대값이 10% 수준에 이른다. 탄성치 모형이 단순 ECM 모형이나 SUR-ECM 모형에 비해 그리 나쁜 예측결과를 낳지 않는다는 것은 새로운 사실이다. 또한 5년 평균 탄성치보다 10년 평균 탄성치를 사용하는 것이 더 나은 예측치를 낳는다는 것은 세수예측에 있어 최근의 자료만을 사용하는 것보다는 과거 꽤 오랜 기간의 자료를 사용하는 것이 바람직하다는 점을 시사한다.
본 연구에서는 GDAPS(T213) 중기 기상 수치예보 자료를 활용한 ESP (Ensemble Streamflow Prediction) 기법을 개발하여 미래에 발생할 수 있는 댐 유입량의 중장기적 확률예측을 위해 초과 확률구간별 댐 유입량을 예측하고 RPSS 검증기법으로 예측결과의 정확도를 분석하였다. 개발된 ESP시스템을 적용한 결과 일단위 개념의 확률예보는 높은 불확실성을 내포할 수 있고, 중장기 확률예보에 초점을 맞추어 1, 3, 7일 등의 예측시간 해상도에 대한 ESP정확도의 민감도를 분석한 결과 예측시간 해상도 간격이 증가할수록 예측결과의 불확실성이 감소하면서 그 정확도가 전반적으로 증가함을 살펴볼 수 있었다. 이러한 결과를 바탕으로 GDAPS 자료를 활용한 1주 단위의 한달(28일)예보를 수행한 ESP 결과는 각 초과 확률구간 분포의 적절한 증가 및 감소로 인하여 그 시간적 변동성이 안정적으로 예측되고 예측결과의 불확실성을 감소시킬 수 있어 그 활용가치가 높은 것으로 나타났다. 이러한 관점에서 본 연구의 ESP 시스템은 중장기적 측면에서 GDAPS 자료의 활용가치를 높일 수 있고, 기존 ESP 결과보다 향상된 정확도로 댐 유입량을 예측할 수 있으므로 실시간 댐 유입량 예측에 적용한다면 수자원 관리 차원에서 유용한 수단이 될 수 있을 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.