• Title/Summary/Keyword: 격자분석

Search Result 1,728, Processing Time 0.027 seconds

Investigation of Co- and Pr-doped yttria-stabilized cubic zirconia (YSZ) single crystal grown by skull melting method (스컬용융법에 의해 성장시킨 Co와 Pr이 첨가된 이트리아안정화큐빅지르코니아(YSZ) 단결정의 연구)

  • Moon, So-I;Seok, Jeong-Won
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.4
    • /
    • pp.140-144
    • /
    • 2014
  • Co-(0.7 wt%) and Pr-(2.0, 3.5 or 5.0 wt%) doped cubic zirconia ($ZrO_2:Y_2O_3=50:50wt%$) single crystals grown by a skull melting method were heat-treated in $N_2$ at $1150^{\circ}C$ for 5 hrs. The brown colored as-grown single crystals were changed into either dark brownish green, greenish blue and light green color after the heat treatment. Before and after the heat treatment, the YSZ (yttria-stabilized zirconia) single crystals were cut for wafer form (${\phi}7.5mm{\times}t3mm$). The optical and structural properties were examined by UV-VIS spectrophotometer and X-ray diffraction. Absorption by $Co^{2+}$(${\fallingdotseq}589nm$: ${\Gamma}_8[^4A_2(^4F)]{\rightarrow}{\Gamma}_8+{\Gamma}_7[^4T_1(^4F)]$, ${\fallingdotseq}610nm$: ${\Gamma}_8[^4A_2(^4F)]{\rightarrow}{\Gamma}_8[^4T_1(^4F)]$], ${\fallingdotseq}661nm$: ${\Gamma}_8[^4A_2(^4F)]{\rightarrow}{\Gamma}_6[^4T_1(^4F)]$]) and $Pr^{3+}$(${\fallingdotseq}450nm$: ${^3}H{_4}-{^3}P{_2}$, ${\fallingdotseq}473nm$: ${^3}H{_4}{\rightarrow}{^3}P{_1}$, ${\fallingdotseq}484nm$: ${^3}H{_4}{\rightarrow}{^3}P{_0}$), change of ionization energy and lattice parameter were confirmed.

The molten KOH/NaOH wet chemical etching of HVPE-grown GaN (HVPE로 성장된 GaN의 용융 KOH/NaOH 습식화학에칭)

  • Park, Jae Hwa;Hong, Yoon Pyo;Park, Cheol Woo;Kim, Hyun Mi;Oh, Dong Keun;Choi, Bong Geun;Lee, Seong Kuk;Shim, Kwang Bo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.4
    • /
    • pp.135-139
    • /
    • 2014
  • The hydride vapor phase epitaxy (HVPE) grown GaN samples to precisely measure the surface characteristics was applied to a molten KOH/NaOH wet chemical etching. The etching rate by molten KOH/NaOH wet chemical etching method was slower than that by conventional etching methods, such as phosphoric and sulfuric acid etching, which may be due to the formation of insoluble coating layer. Therefore, the molten KOH/NaOH wet chemical etching is a better efficient method for the evaluation of etch pits density. The grown GaN single crystals were characterized by using X-ray diffraction (XRD) and X-ray rocking curve (XRC). The etching characteristics and surface morphologies were studied by scanning electron microscopy (SEM). From etching results, the optimum etching condition that the etch pits were well independently separated in space and clearly showed their shape, was $410^{\circ}C$ and 25 min. The etch pits density obtained by molten KOH/NaOH wet chemical etching under optimum etching condition was around $2.45{\times}10^6cm^{-2}$, which is commercially an available materials.

A Study of Gamma-ray Irradiation Effects on Commercially Available Single-mode Optical Fiber (국내외 상용 단일모드 광섬유의 감마선 영향 분석 연구)

  • Kim, Jong-Yeol;Lee, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.564-567
    • /
    • 2012
  • Optical fibers are going to be used for telecommunication, image fibers, sensors under irradiation in nuclear power plants and various irradiation facilities. Especially, Temperature detection sensors using Raman light scattering, temperature or strain sensors using fiber gratings, magnet-optical sensors using photo-magnetic effect, are already commercialized. However, When fibers are exposed to ionizing radiation, color centers are formed in fibers which reduces their light transmission, and it is limited in applying under radiation environments. In this study, $Co^{60}$ gamma-ray induced optical attenuation on Ge-doped single mode(SM) fiber has been measured. Gamma-ray is irradiated for 4hours at the dose rate of 0.5kGy/hr, 2kGy/hr, 8kGy/hr. Consequently, gamma-ray induced loss based on radiation effects in Ge-doped SM fiber occur precisely. Furthermore, dose rate effect that the higher dose rate in the same total dose, the more increase loss of optical fiber and annealing effect that the higher the loss after irradiation, the more increase the recovery rate of the loss are observed in the fiber. This results plan to make use of bases in the study of the radiation-hardened optical fiber.

  • PDF

Crystal Growth of $Y_3Al_5O_{12}$ and Nd : $Y_3Al_5O_{12}$ by Czochralski. Technique (융액인상법에 의한 $Y_3Al_5O_{12}$및 Nd : $Y_3Al_5O_{12}$ 단결정육성)

  • Yu, Yeong-Mun;Lee, Yeong-Guk;Park, Ro-Hak
    • Korean Journal of Crystallography
    • /
    • v.5 no.2
    • /
    • pp.51-66
    • /
    • 1994
  • Y3Al5O2 and Nd: Y3Al5012 single crystals were grown by Czochralskl technique. The effectt of pulling rate rotation rate, and doping level of Nd3+ ion on the crystal quality were studied Various types of defects were analysed by photo-elastic effect and chemical etching method Finally, spectroscopic and laser poputies of grown crystal were measured. Optirmum pulling rate for good quality was dependant on the doping level of Nd3+ ion. It was found that the suitable pulling rates for pure Y3Al5O12 for 3.0∼3.5 a/o Nd3+ ion doped Y3Al5012 and for more than 40 a/o Nd3+ ion doped Y3Al5012 were 2∼4mm/hr, 0.6∼0.5mm/hr, and less than 0.4mm/hr respectively. Solid-liquid interface was convex at the rotation rate of 27∼60rpm, and concave at the rotation rate of 80∼100rpm. Growth axis was confired to <111> direction and lattice parameter was measured to 12.017A. Core (211) facets,striations, inclusions of metal particles, dislocations and optical inhonngeneities were detected. Four level laser transition of Nd3+ion in YIAls012 single crystal were identified by the spectroscopic measurements. Laser rod with tam diameter and 63mm length was fabricated from grown Nd3+ Y3Al5012 sin91e crystals. 1.8lJ of lasing threshould and 0.49% of soope efficiency were measured by the Pulsed laser action.

  • PDF

Optimization of flow performance by designing orifice shape of outdoor unit of air-conditioner (에어컨 실외기 냉각팬 시스템의 오리피스 형상 설계를 통한 유량 성능 최적화)

  • Ryu, Seo-Yoon;Kim, Sanghyeon;Cheong, Cheolung;Kim, Jong-Uk;Park, Byeong Il;Park, Se Min
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.6
    • /
    • pp.371-377
    • /
    • 2017
  • The performance of an air conditioner is closely related to the cooling performance of a split-type outdoor unit so that, in most of the relevant preceding studies, the independent performance of an axial fan in an outdoor unit has been studied. However, there is a lack of research on the effects of other components in an outdoor units was rarely investigated. Therefore, in this paper, the effects of the fan orifice among other parts on the flow performance of the outdoor unit was numerically investigated. A virtual fan tester consisting of 18 million grids was developed for highly resolved flow simulation. The unsteady RANS (Reynolds-averaged Navier-Stokes) equations are numerically solved by using finite-volume CFD (Computational Fluid Dynamics) techniques. In order to verify the validity of the numerical methods, the predicted P-Q curve of the cooling fan in a full outdoor unit is compared with the measured one. Optimization of orifice shape was carried out for maximum flow performance of the outdoor unit using the validated numerical method.

R Based Parallelization of a Climate Suitability Model to Predict Suitable Area of Maize in Korea (국내 옥수수 재배적지 예측을 위한 R 기반의 기후적합도 모델 병렬화)

  • Hyun, Shinwoo;Kim, Kwang Soo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.19 no.3
    • /
    • pp.164-173
    • /
    • 2017
  • Alternative cropping systems would be one of climate change adaptation options. Suitable areas for a crop could be identified using a climate suitability model. The EcoCrop model has been used to assess climate suitability of crops using monthly climate surfaces, e.g., the digital climate map at high spatial resolution. Still, a high-performance computing approach would be needed for assessment of climate suitability to take into account a complex terrain in Korea, which requires considerably large climate data sets. The objectives of this study were to implement a script for R, which is an open source statistics analysis platform, in order to use the EcoCrop model under a parallel computing environment and to assess climate suitability of maize using digital climate maps at high spatial resolution, e.g., 1 km. The total running time reduced as the number of CPU (Central Processing Unit) core increased although the speedup with increasing number of CPU cores was not linear. For example, the wall clock time for assessing climate suitability index at 1 km spatial resolution reduced by 90% with 16 CPU cores. However, it took about 1.5 time to compute climate suitability index compared with a theoretical time for the given number of CPU. Implementation of climate suitability assessment system based on the MPI (Message Passing Interface) would allow support for the digital climate map at ultra-high spatial resolution, e.g., 30m, which would help site-specific design of cropping system for climate change adaptation.

Thermal-Hydraulic Research Review and Cooperation Outcome for Light Water Reactor Fuel (경수로핵연료 열수력 연구개발 분석 및 연산학 협력 성과)

  • In, Wang Kee;Shin, Chang Hwan;Lee, Chi Young;Lee, Chan;Chun, Tae Hyun;Oh, Dong Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.12
    • /
    • pp.815-824
    • /
    • 2016
  • The fuel assembly for pressurized water reactor (PWR) consists of fuel rod bundle, spacer grid and bottom/top end fittings. The cooling water in high pressure and temperature is introduced in lower plenum of reactor core and directed to upper plenum through the subchannel which is formed between the fuel rods. The main thermal-hydraulic performance parameters for the PWR fuel are pressure drop and critical heat flux in normal operating condition, and quenching time in accident condition. The Korea Atomic Energy Research Institute (KAERI) has been developing an advanced PWR fuel, dual-cooled annular fuel and accident tolerant fuel for the enhancement of fuel performance and the localization. For the key thermal-hydraulic technology development of PWR fuel, the KAERI LWR fuel team has conducted the experiments for pressure drop, turbulent flow mixing and heat transfer, critical heat flux(CHF) and quenching. The computational fluid dynamics (CFD) analysis was also performed to predict flow and heat transfer in fuel assembly including the spent fuel assembly in dry cask for interim repository. In addition, the research cooperation with university and nuclear fuel company was also carried out to develop a basic thermal-hydraulic technology and the commercialization.

Three-dimensional Simulation of Wave Reflection and Pressure Acting on Circular Perforated Caisson Breakwater by OLAFOAM (OLAFOAM에 기초한 원형유공케이슨 방파제의 반사율 및 작용파압에 관한 3차원시뮬레이션)

  • Lee, Kwang-Ho;Bae, Ju-Hyun;Kim, Sang-Gi;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.6
    • /
    • pp.286-304
    • /
    • 2017
  • In this study, we proposed a new-type of circular perforated caisson breakwater consisting of a bundle of latticed blocks that can be applied to a small port such as a fishing port, and numerically investigated the hydraulic characteristics of the breakwater. The numerical method used in this study is OLAFOAM which newly added wave generation module, porous media analysis module and reflected wave control module based on OpenFOAM that is open source CFD software published under the GPL license. To investigate the applicability of OLAFOAM, the variations of wave pressure acting on the three-dimensional slit caisson were compared to the previous experimental results under the regular wave conditions, and then the performance for irregular waves was examined from the reproducibility of the target irregular waves and frequency spectrum analysis. As a result, a series of numerical simulations for the new-type of circular perforated caisson breakwaters, which is similar to slit caisson breakwater, was carried out under the irregular wave actions. The hydraulic characteristics of the breakwater such as wave overtopping, reflection, and wave pressure distribution were carefully investigated respect to the significant wave height and period, the wave chamber width, and the interconnectivity between them. The numerical results revealed that the wave pressure acting on the new-type of circular perforated caisson breakwaters was considerably smaller than the result of the impermeable vertical wall computed by the Goda equation. Also, the reflection of the new-type caisson breakwater was similar to the variation range of the reflection coefficient of the existing slit caisson breakwater.

Fabrication and Characterization of Si Quantum Dots in a Superlattice by Si/C Co-Sputtering (실리콘과 탄소 동시 스퍼터링에 의한 실리콘 양자점 초격자 박막 제조 및 특성 분석)

  • Kim, Hyun-Jong;Moon, Ji-Hyun;Cho, Jun-Sik;Park, Sang-Hyun;Yoon, Kyung-Hoon;Song, Jin-Soo;O, Byung-Sung;Lee, Jeong-Chul
    • Korean Journal of Materials Research
    • /
    • v.20 no.6
    • /
    • pp.289-293
    • /
    • 2010
  • Silicon quantum dots (Si QDs) in a superlattice for high efficiency tandem solar cells were fabricated by magnetron rf sputtering and their characteristics were investigated. SiC/$Si_{1-x}C_x$ superlattices were deposited by co-sputtering of Si and C targets and annealed at $1000^{\circ}C$ for 20 minutes in a nitrogen atmosphere. The Si QDs in Si-rich layers were verified by transmission electron microscopy (TEM) and X-ray diffraction. The size of the QDs was observed to be 3-6 nm through high resolution TEM. Some crystal Si and -SiC peaks were clearly observed in the grazing incident X-ray diffractogram. Raman spectroscopy in the annealed sample showed a sharp peak at $516\;cm^{-1}$ which is an indication of Si QDs. Based on the Raman shift the size of the QD was estimated to be 4-6 nm. The volume fraction of Si crystals was calculated to be about 33%. The change of the FT-IR absorption spectrum from a Gaussian shape to a Lorentzian shape also confirmed the phase transition from an amorphous phase before annealing to a crystalline phase after annealing. The optical absorption coefficient also decreased, but the optical band gap increased from 1.5 eV to 2.1 eV after annealing. Therefore, it is expected that the optical energy gap of the QDs can be controlled with growth and annealing conditions.

Construction of Basin Scale Climate Change Scenarios by the Transfer Function and Stochastic Weather Generation Models (전이함수모형과 일기 발생모형을 이용한 유역규모 기후변화시나리오의 작성)

  • Kim, Byung-Sik;Seoh, Byung-Ha;Kim, Nam-Won
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.3 s.134
    • /
    • pp.345-363
    • /
    • 2003
  • From the General Circulation Models(GCMs), it is known that the increases of concentrations of greenhouse gases will have significant implications for climate change in global and regional scales. The GCM has an uncertainty in analyzing the meteorologic processes at individual sites and so the 'downscaling' techniques are used to bridge the spatial and temporal resolution gaps between what, at present, climate modellers can provide and what impact assessors require. This paper describes a method for assessing local climate change impacts using a robust statistical downscaling technique. The method facilitates the rapid development of multiple, low-cost, single-site scenarios of daily surface weather variables under current and future regional climate forcing. The construction of climate change scenarios based on spatial regression(transfer function) downscaling and on the use of a local stochastic weather generator is described. Regression downscaling translates the GCM grid-box predictions with coarse resolution of climate change to site-specific values and the values were then used to perturb the parameters of the stochastic weather generator in order to simulate site-specific daily weather values. In this study, the global climate change scenarios are constructed using the YONU GCM control run and transient experiments.