• Title/Summary/Keyword: 격납구조물

Search Result 77, Processing Time 0.022 seconds

A Study on Robust Optimal Sensor Placement for Real-time Monitoring of Containment Buildings in Nuclear Power Plants (원전 격납 건물의 실시간 모니터링을 위한 강건한 최적 센서배치 연구)

  • Chanwoo Lee;Youjin Kim;Hyung-jo Jung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.3
    • /
    • pp.155-163
    • /
    • 2023
  • Real-time monitoring technology is critical for ensuring the safety and reliability of nuclear power plant structures. However, the current seismic monitoring system has limited system identification capabilities such as modal parameter estimation. To obtain global behavior data and dynamic characteristics, multiple sensors must be optimally placed. Although several studies on optimal sensor placement have been conducted, they have primarily focused on civil and mechanical structures. Nuclear power plant structures require robust signals, even at low signal-to-noise ratios, and the robustness of each mode must be assessed separately. This is because the mode contributions of nuclear power plant containment buildings are concentrated in low-order modes. Therefore, this study proposes an optimal sensor placement methodology that can evaluate robustness against noise and the effects of each mode. Indicators, such as auto modal assurance criterion (MAC), cross MAC, and mode shape distribution by node were analyzed, and the suitability of the methodology was verified through numerical analysis.

Impact Bechavior and Impact Analysis of Reinforced Concrete Walls (철근콘크리트 벽체의 충격거동 및 충격해석연구)

  • 오병환
    • Magazine of the Korea Concrete Institute
    • /
    • v.4 no.2
    • /
    • pp.127-137
    • /
    • 1992
  • 원자력발전소의 콘크리트 격납용기구조물등과 같이 안전성이 높게 요구되는 구조물들은 예기치 않은 혹은 부주의한 사고로 인하여 발생하는 비산물체에 의한 충격에 충분히 저항할 수 있도록 설계되어야 한다. 이러한 물체에 의한 충격은 벽면의 국부적인 피해와 벽 전체의 전반휨응답으로 나타나며, 이에 저항하기 위해서는 벽체의 관통이나 스캐빙(scabbing)이 일어나지 않도록 벽두께를 결정하여야 하고 또한, 파괴가 일어나지 않도록 벽체를 설계하여야 한다. 본 논문에서는 지금까지 연구된 충격현상에 대한 이론 및 실험결과를 토대로 하여 벽면의 국부효가 발생시 이와 동시에 진행되는 탄성효과 및 전반거동효과를 고려하여 관입깊이를 계산할 수 있는 이론을 유도하였으며, 기존의 실험결과를 이용하여 이론적인 결점을 보완한 반이론식을 제안하였다. 또한, 본 논문에서는 실험결과와 기존식성충격과 소성충격을 구분짓는 스폴링속도에 대한 개념을 제시하였다. 본 논문은 충격을 받는 철근콘크리트 구조물의 벽체설계에 유용한 토대를 제공할 것으로 사료된다.

Infinite Elements for Soil-Structure Interaction Analysis (지반-구조물의 상호작용 해석을 위한 무한요소)

  • 양신추;윤정방;이인모
    • Computational Structural Engineering
    • /
    • v.2 no.3
    • /
    • pp.85-95
    • /
    • 1989
  • This paper presents a study of soil-structure interaction problems using infinite elements. The infinite elements are formulated for homogeneous and layered soil media, based on approximate expressions for three components of propagating waves, namely the Rayleigh, compressive and shear waves. The integration scheme which was proposed for problems with single wave component by waves. The integration scheme which was proposed for problems with single wave component by Zenkiewicz is expanded to the multi-waves problem. Verifications are carried out on rigid circular footings which are placed on and embedded in elastic half space. Numerical analysis is performed for a containment structure of a nuclear power plant subjected to a horizontal seismic excitation.

  • PDF

Development of a Dynamic Deformable Rubber Membrane Parapet to Cope with the Long Term Sea Level Rise and the Abnormal Waves (장기해수면 상승 및 이상파랑에 대비한 동적 가변형 고무막체 파라펫 개발)

  • Kim, Sun-Sin;Chun, In-Sik;Lee, Young-Gun;Ko, Jang-Hee;Hong, Seung-Ik
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.1
    • /
    • pp.34-42
    • /
    • 2011
  • It's been reported that the global warming effect has invoked the ever increasing typhoon intensity and long-term sea level rise which jointly cause severe wave overtopping over breakwaters or shore dykes. A simple measure to cope with this undesirable change may be just to increase the crest height of the dykes and breakwaters. This is surely effective to prevent wave overtopping, but it also decreases the seaward visibility of coastal waterfront. In this paper, a dynamic deformable rubber membrane parapet which not only reduces wave overtopping in storm period but also secures seascapes in normal days is presented. Several optimal configurations of the parapet are proposed. Through numerical analyses using a nonlinear finite element model and hydraulic experiments, the air controlled expansion and contraction of the parapets, their behavior against wave overtopping and structural stability are investigated.

Code Change for using the High-Strength(550 MPa) Headed Deformed Bars of Large-Sized Diameter(57 mm) in Concrete Containments (대구경(57 mm) 및 고강도(550 MPa) 확대머리 철근의 콘크리트 격납구조물 적용을 위한 코드개정에 관한 연구)

  • Lee, Byung-Soo;Lim, Sang-Jun;Yun, Hyun-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.147-161
    • /
    • 2017
  • Generally, significant amount of reinforcements are used in nuclear power plant structures and it may cause several potential problems during the construction. In particular, it is more difficult to pour concrete into structural member joint area than other areas because of the significant congestion of the joint area due to a lot of hooked bars, embedded materials, and other reinforcements. The purpose of this study is to solve these problems due to the reinforcement congestion by using the high-strength(ASTM A615 Gr.80) headed deformed bars of large-sized diameter(43 mm & 57 mm) in nuclear power plant structures as a alternative of standard hooked bars. In order to use headed deformed bars effectively, It is necessary to find the method how to relax limits on their use while maintaining or improving the anchorage capacity. Therefore, this study will analyze the results of tests planned to evaluate the influence of the restricted variables, such as bar size, yield strength, clear cover thickness.

The Structural Integrity Test for a PSC Containment with Unbonded Tendons and Numerical Analysis II (비부착텐던 PSC 격납건물에 대한 구조건전성시험 및 수치해석 II)

  • Noh, Sanghoon;Jung, Raeyoung;Lee, Byungsoo;Lim, Sang-Jun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.5
    • /
    • pp.535-542
    • /
    • 2015
  • A reactor containment acts as a final barrier to prevent leakage of radioactive material due to the possible reactor accidents into external environment. Because of the functional importance of the containment building, the SIT(Structural Integrity Test) for containments shall be performed to evaluate the structural acceptability and demonstrate the quality of construction. In this paper, numerical analyses are presented, which simulate the results obtained from the SIT for a prestressed concrete(PSC) structure. A sophisticate structural analysis model is developed to simulate the structural behavior during the SIT properly based on various preliminary analysis results considering contact condition among structural elements. From the comparison of the analysis and test results based on the acceptance criteria of ASME CC-6000, it can be concluded that the construction quality of the containment has been well maintained and the acceptable performance of new design features has been verified.

The Structural Integrity Test for a PSC Containment with Unbonded Tendons and Numerical Analysis I (비부착텐던 PSC 격납건물에 대한 구조건전성시험 및 수치해석 I)

  • Noh, Sanghoon;Jung, Raeyoung;Kim, Sung-Taek;Lim, Sang-Jun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.5
    • /
    • pp.523-533
    • /
    • 2015
  • A reactor containment acts as a final barrier to prevent leakage of radioactive material due to the possible reactor accidents into external environment. Because of the functional importance of the containment building, the SIT(Structural Integrity Test) for containments shall be performed to evaluate the structural acceptability and demonstrate the quality of construction. An initial numerical analysis was performed to simulate the results obtained from the SIT for a prestressed concrete(PSC) structure. But the analysis results by the initial model expected smaller displacements than the measured ones by 30% at some locations. Accordingly, the research and development to improve the initial model to corelate the measured results of the SIT more properly have been performed. In this paper, the effects of the loss of concrete due to duct for tendons and the contact of duct and tendons in un-bonded tendon system are mainly evaluated based on the preliminary analysis results. In addition, the importances of the proper definition of mesh connectivity among structural elements of concrete, liner plates, rebars and tendons are discussed.

A Study of Time Dependent Diffusion for Prediction Service Life in NPPs Safety Related Concrete Structures (원전 안전관련 콘크리트 구조물의 수명예측을 위한 재령계수에 대한 연구)

  • Lee, Choon-Min;Yoon, Eui-Sik;Kim, Seung-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.3
    • /
    • pp.136-142
    • /
    • 2019
  • Nuclear power plant concrete structures are in contact with the coast, and durability due to chloride attack is very important because it is used as cooling water by taking seawater. For this purpose, a 3-year long-term saltwater immersion test was carried out to evaluate chloride ion diffusion coefficient and age apponent (m) The m values of the foundation with 4,000 class was 0.35 ~ 0.39, similar to KCI or ACI suggested values. essential service water constructions and tunnels of 5,000 class were 0.44 ~ 0.53 and 6,000 class, and 0.62 of reactor containment buildings were similar to the proposed values of FIB. As a result of the prediction of the service life with the measured age coefficient, all the safety related concrete structures of the nuclear power plants satisfied the service life of more than 60 years.

Analysis of the Linear Transformation of Prestressing Tendon Using Equivalent toad Method (등가하중법 관점에서 분석한 프리스트레싱 텐던의 직선이동)

  • 오병환;전세진
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.843-850
    • /
    • 2002
  • Linear transformation theory has been effectively used in the design and analysis of prestressed concrete structures. The underlying assumptions of the theory, which were often overlooked, are investigated in the respect of equivalent load method. As a result, it is found that the same equivalent loading system is produced for all the cases of the linear transformation by the assumptions of the conventional equivalent load method. On the other hand, equivalent loading systems in a strict and accurate sense do not satisfy the classical theories of the linear transformation. Also, it is shown that a little different equivalent loading system from the conventional one is obtained for each linear transformation according to the proposed equivalent load method that is derived from the self-equilibrium property of the tendon-induced forces. Therefore, it can be concluded that the linear transformation theory is valid only when referring to the conventional approximate equivalent load method. The discussions are further extended to the eccentrically located circumferential tendon in the wall of containment structures, where the problem of eccentricity is analyzed also from the view point of the linear transformation.

Static and Dynamic Analysis of Reinforced Concrete Axisymmetric Shell on an Elastic Foundation - With Application to the Nuclear Reinforced Concrete Containment Structures- (탄성지반상에 놓인 철근콘크리트 축대칭 쉘의 정적 및 동적 해석(I) -철근 콘크리트 원자로 격납 건물을 중심으로-)

  • 조진구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.3
    • /
    • pp.82-91
    • /
    • 1996
  • This is a basic study for the static and dynamic analysis on the elasto-plastic and elasto-viscoplastic of an axi-symmetric shell. The objective of this study was to investigate the mechanical characteristics of a nuclear reinforced concrete containment structure, which was selected as a model, by a numerical analysis using a finite element method. The structure was modeled with discrete ring elements of 8-noded isoparametric element rotating against the symmetrical axis, and the interaction between the foundation and the structure was modeled by Winkler's model. Also, the meridional tendon was modeled with 2-node truss elements, and the hoop tendon was done with point elements in two degrees of freedom. The effect of the tendon was considered without the increasement in total degree of freedom as the stiffness matrix of modeled tendon elements was assembled on the stiffness matrix of ring elements linked with the tendon. The results obtained from the analysis of an example were summarized as follows : 1. The stresses in the hoop direction on the interior and exterior surfaces of the structure were shown in changes of similar trend, and high stresses appeared on the structure wall 2. The stresses in the meridional direction on the interior and exterior surfaces were shown in change of different trend. Especially, the stresses at the junctions between the dome and the wall and between the wall and the bottom plate of the structure were very high, compared with those at other parts of the structure. 3. The stress changes in the direction of thickness on the crown of the dome were much linearly distributed. However, as the amount of tendon increased, the stresses in the upper and lower parts of the wall established with the tendon were shown stress concentration. 4. The stress changes in the direction of thickness on the center of the structure wall was linearly distributed in the all cases, and special stress due to the use of the tendon was not shown.

  • PDF