• Title/Summary/Keyword: 겔 선량측정법

Search Result 4, Processing Time 0.022 seconds

Three-Dimensional Dosimetry Using Magnetic Resonance Imaging of Polymer Gel (중합체 겔과 자기공명영상을 이용한 3차원 선량분포 측정)

  • Oh Young-Taek;Kang Haejin;Kim Miwha;Chun Mison;Kang Seung-Hee;Suh Chang Ok;Chu Seong Sil;Seong Jinsil;Kim Gwi Eon
    • Radiation Oncology Journal
    • /
    • v.20 no.3
    • /
    • pp.264-273
    • /
    • 2002
  • Purpose : Three-dimensional radiation dosimetry using magnetic resonance imaging of polymer gel was recently introduced. This dosimetry system is based on radiation induced chain polymerization of acrylic monomers in a muscle equivalent gel and provide accurate 3 dimensional dose distribution. We planned this study to evaluate the clinical value of this 3-dimensional dosimetry. Materials and Methods: The polymer gel poured into a cylindrical glass flask and a spherical glass flask. The cylindrical test tubes were for dose response evaluation and the spherical flasks, which is comparable to the human head, were for isodose curves. T2 maps from MR images were calculated using software, IDL. Dose distributions have been displayed for dosimetry. The same spherical flask of gel and the same irradiation technique was used for film and TLD dosimetry and compared with each other. Results : The R2 of the gel respond linearly with radiation doses in the range of 2 to 15 Gy. The repeated dosimetry of spherical gel showed the same isodose curves. These isodose curves were identical to dose distributions from treatment planning system especially high dose range. In addition, the gel dosimetry system showed comparable or superior results with the film and TLD dosimetry. Conclusion : The 3-dimensional dosimetry for conformal radiation therapy using MRI of polymer gal showed stable and accurate results. Although more studies are needed for convenient clinical application, it appears to be a useful tool for conformal radiation therapy.

3-Dimensional Verification Technique for Target Point Error (자기공명영상기반 겔 선량측정법을 이용한 3차원적 목표 중심점 점검기술)

  • Lee, Kyung-Nam;Lee, Dong-Joon;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.22 no.1
    • /
    • pp.35-41
    • /
    • 2011
  • For overall system test, hidden-target test have been used using film which leads to inherent analysis error. The purpose of our study is to quantify this error and to propose gel dosimeter based verification technique for 3-dimensional target point error. The phantom was made for simulation of human head and this has ability to equip 10 gel-dosimeter. $BANGkit^{TM}$ which we are able to manufacture whenever it is needed as well as to easily change the container with different shapes was used as a gel dosimeter. The 10 targets were divided into two groups based on shapes of areas with a planned 50% isodose line. All treatment and analysis was performed three times using Novalis and $BrainSCAN^{TM}$. The target point error is $0.77{\pm}0.15mm$ for 10 targets and directional target point error in each direction is $0.54{\pm}0.23mm$, $0.37{\pm}0.08mm$, $0.33{\pm}0.10mm$ in AP (anterior-posterior), LAT (lateral), and VERT (vertical) direction, respectively. The result of less than 1 mm shows that the treatment was performed through each precise step in treatment procedure. In conclusion, the 3-dimensional target point verification technique can be one of the techniques for overall system test.

A Study of Optimized MRI Parameters for Polymer Gel Dosimetry (중합체 겔 선량측정법을 위한 최적의 자기공명영상 변수에 관한 연구)

  • Cho, Sam-Ju;Chung, Young-Lip;Lee, Sang-Hoon;Huh, Hyun-Do;Choi, Jin-Ho;Park, Sung-Ill;Shim, Su-Jung;Kwon, Soo-Il
    • Progress in Medical Physics
    • /
    • v.23 no.2
    • /
    • pp.71-80
    • /
    • 2012
  • In order to verify exact dose distributions in the state-of-the-art radiation techniques, a newly designed three-dimensional dosimeter and technique has been took strongly into consideration. The main purpose of our study is to verify the optimized parameters of polymer gel as a real volumetric dosimeter in terms of the various study of MRI. We prepared a gel dosimeter by combing 8% of gelatin, 8% of MAA, and 10 mM of THPC. We used a Co-60 gamma-ray teletherapy unit and delivered doses of 0, 2, 4, 6, 8, 10, 12, and 14 Gy to each polymer gel with a solid phantom. We used a fast spin-echo pulse to acquire the characterized T2 time of MRI. The signal noise ratio (SNR) of the head & neck coil was a relatively lower sensitivity than the body coil; therefore the dose uncertainty of head & neck coil would be lower than body coil's. But the dose uncertainty and resolution of the head & neck coil were superior to the body coil in this study. The TR time between 1,500 ms and 2,000 ms showed no significant difference in the dose resolution, but TR of 1,500 ms showed less dose uncertainty. For the slice thickness of 2.5 mm, less dose uncertainty of TE times was at 4 Gy, as well, it was the lowest result over 4 Gy at TE of 12 ms. The dose uncertainty was not critical up to 6 Gy, but the best dose resolution was obtained at 20 ms up to 8 Gy. The dose resolution shows the lowest value was over 20 ms and was an excellent result in the number of excitation (NEX) of three. The NEX of two was the highest dose resolution. We concluded that the better result of slice thickness versus NEX was related to the NEX increment and thin slice thickness.

Synthesis of Electroactive PAAc/PVA/PEG Hydrogel Soft Actuator by Radiation Processing and Their Dynamic Characteristics (방사선을 이용한 전기 활성 PAAc/PVA/PEG 하이드로겔 소프트 액추에이터의 제조 및 구동 특성 분석)

  • Shin, Yerin;Kim, So Yeon
    • Applied Chemistry for Engineering
    • /
    • v.30 no.6
    • /
    • pp.698-706
    • /
    • 2019
  • Over the last few decades, there have been a lot of efforts to develop soft actuators, which can be external stimuli-responsive and applied to the human body. In order to fabricate medical soft actuators with a dynamic precision control, the 3D crosslinked poly(acrylic acid) (PAAc)/poly(vinyl alcohol) (PVA)/poly(ethylene glycol) (PEG) hydrogels were synthesized in this study by using a radiation technique without noxious chemical additives or initiators. After irradiation, all hydrogels showed high gel fraction over 75% and the ATR-FTIR spectra indicated that PAAc/PVA/PEG hydrogels were successfully synthesized. In addition, the gel fraction, equilibrium water content, and compressive strength were measured to determine the change in physical properties of PAAc/PVA/PEG hydrogels according to the irradiation dose and content ratio of constituents. As the irradiation dose and amount of poly(ethylene glycol) diacrylate (PEGDA) increased, the PAAc/PVA/PEG hydrogels showed a high crosslinking density and mechanical strength. It was also confirmed that PAAc/PVA/PEG hydrogels responded to electrical stimulation even at a low voltage of 3 V. The bending behavior of hydrogels under an electric field can be controlled by changing the crosslinking density, ionic group content, applied voltage, and ionic strength of swelling solution.