C++ 언어는 객체지향 프로그래밍 언어로, 기존의 C++ 프로그램은 각각의 플랫폼에 따른 컴파일러를 통해 목적기계의 코드(object code)로 변환되므로 실행되는 플랫폼에 의존적인 단점이 있다. 이러한 단점을 보완하는 방법으로 스택기반의 가상기계와 가상기계의 입력형태인 중간코드를 이용하는 기법이 있다. EVM(Embedded Virtual Machine)은 ANSI C, ISO/IEC C++ 언어와 SUN사의 Java 언어 등을 모두 수용할 수 있는 임베디드 시스템 기반의 가상기계이며, EVM에서 실행되는 중간코드인 SIL(Standard Intermediate Language)은 객체지향 언어와 순차적인 언어를 모두 수용하기 위한 명령 코드의 집합으로 설계되어 있다. 본 논문에서는 C++ 컴파일러를 통해 생성된 SIL 코드가 올바른지 검증하고 원시코드의 분석을 용이하게 하기 위해서 SIL 코드를 어셈블리 코드와 유사한 형태의 재 표현된 C++ 프로그램으로 역컴파일하는 시스템을 설계하고 구현하였다.
점진적 움직임 기반 구조(Incremental Structure from Motion)는 다양한 시점에서 촬영한 영상들을 하나 씩 점진적으로 추가하여 3차원 장면을 복원하는 방법이다. 3차원 구조 복원에 사용되는 영상 켤레들 중에는 불필요한 켤레들도 충분히 포함되어 있으므로 복원된 구조의 불안정성과 불필요한 영상 켤레 처리로 인한 성능 손실이 발생할 수 있다. 이 논문은 상대적으로 불필요한 영상 켤레를 입력 영상 집합에 맞게 적응적으로 제거하는 방법을 제안한다. 대응점 탐색 단계에서 기하학적 검증작업 전후로 총 두 번의 영상 켤레 제거가 실행되며, 통계적인 방법 및 기하학적으로 검증된 대응점 비율을 이용하여 문턱치를 결정한다. 실험 결과 3차원 복원 결과에 지장을 주지 않으면서 복원에 필요한 영상 켤레 개수를 효과적으로 줄일 수 있었다.
객체지향 설계에 많이 사용되고 있는 UML의 일부 다이아그램들의 일관성과 완전성을 검증하기 위하여 UML다이아그램들을 분석하여 ER모델에 적용하고, 일련의 집합과 함수들을 사용하여 정형적으로 명세한 다음 이러한 함수들의 의미에 따라 UML 다이아그램들의 일관성과 완전성을 보장하는 일련의 규칙들을 유도한다. 이러한 규칙들은 추후에 다이아그램을 생성하는 능력과 일관성과 완전성을 검사하는 능력을 함에 가진 CASE 도구에 포함될 수 있다.
본 논문에서는 사용자의 작업을 최소화하고 결과의 정확성을 높일 수 있는 3 차원 영역 분할 알고리즘을 제시하고 있다. 경계선을 강화하고 유사영역을 평탄화하는 SRAD(Speckle Reducing Anisotropic Diffusion) 필터링은 잡음에 의한 3 차원 영역확장의 오류를 줄이고 분할 대상의 경계부분까지 안정적으로 영역을 확장시켜준다. 3 차원 영역확장 방법은 사용자에 의해 입력된 시작점을 기반으로 영역의 유사성과 집합성을 판단하는 평가함수(cost Function)를 계산하여 3 차원으로 영역을 확장시킨다. 이러한 방법을 이용할 때에 보다 효과적으로 3D MRI 데이터에 대한 영상 분할을 수행할 수 있다. 또한 논문에서 제시한 알고리즘의 검증을 위해서 분할 결과에 대한 의료진의 검증을 수행하였다.
집적회로가 고집적화 그리고 고성능화 되어지면서 설계된 레이아웃의 전기적 연결 관계와 회로 성능을 검증할 필요성이 더욱 강조되고 있다. 본 논문에서는 레이아웃으로부터 소자의 기하학적인 모델 파라미터와 기생 저항과 커패시턴스 등을 포함하는 회로 정보를 추출하기 위하여 레이아웃 내의 모든 배선에 대한 도형을 방향성 변을 사용하여 독립된 다각형 블록의 집합으로 기술하고, 이 블록과 소자의 인접여부에 의해 MOS 트랜지스터와 전기적 연결 관계를 찾아서 회로를 추출할 수 있는 새로운 알고리즘을 제안한다.
복지사각지대 발굴은 복지 서비스가 필요하지만 수혜를 받지 못하고 있는 국민을 찾아내서 지원해주는 정부 시스템이다. 본 연구는 이 복지사각지대 발굴 관리 시스템의 효용성을 높이기 위해, 발굴 예측 모델의 정확도를 높이기 위한 방법으로, 발굴 과정에서 사용하는 속성을 선택하고 평가하기 위한 방법을 제안한다. 제안 방법은 각 속성의 유효성을 검증하고, 검증된 속성 집합을 선택한 뒤, 예측 기준을 결정하는 세 단계로 구성되며, 이 방법을 통해 기존 복지사각지대 예측 모델의 개선에 적용할 수 있을 것으로 기대할 수 있다.
1990년 중반에는 우리나라 모든 원자력 발전소의 사용 후 핵연료 저장조의 용량부족이 예견된다. 따라서 조밀화 집합체로 저장하는 MDR 방법을 가장 저장용량이 적은 9, 10호기 원전의 저장용량을 확장시키는데 적용하고자 하였다. 이러한 방법을 채택할 때 9,10원전의 사용후 핵연료 저장조의 안전성을 확인하기 위해 격자 간격과 저장통 두께를 변화시키면서 중성자 증배계수를 AMPX-KENO IV코드로 계산하였다. 그리고 이 전산체제를 검증하기 위해 1981년 B & W에서 실시한 임계실험에 대하여 검증계산을 수행하였다. 또한 가상사고로써 malposition사고도 모사하였다. 그 결과, 원전 9, 10호기의 핵연료 조밀화 저장법은 안전하며, 설비 및 냉각공간을 고려하여 9/3 노심분을 27/3 노심분의 저장 용량으로 확장할 수 있을 것이다.
공간분석에서는 사용되는 공간데이터 종류에 따라, 각각의 특징있는 분석법을 요구하므로, 다양한 접근법을 필요로 한다. 특히, 두 종류의 상이한 공간데이터 집합이 공존하는 경우, 어느 한 공간객체의 분포에 영향을 끼치는 다른 공간객체 집합에 대한 부분집합을 추출하여, 공간객체간의 관계성을 규명할 수가 있다. 지리정보시스템 등의 공간객체 분석기술의 발달로, 시각적으로도 간단히 공간객체간의 관계성을 파악할 수 있으나, 데이터의 양이 방대해지는 추세에서는, 지리정보시스템 (geographical information system)상에서 시각화된 공간객체 정보만으로는 서로 다른 공간객체간의 분포에서 상호관계성을 정량적으로 분석하기 어렵다. 따라서, 본 연구에서는 정량적 기준을 통해, 서로 다른 두 공간객체 간의 관계성 분석을 주목적으로 한다. 모델화된 정량적 기준의 평가를 위해 분석에 사용되는 실제 데이터는, 소규모 소매점포의 매출데이터를 사례로 들기로 한다. 데이터 수집에 제한이 있다는 특수환경으로 인해, 본 연구에서 사용되는 모델은 로짓모델을 기반으로 한 미지파라미터 추정이 가능하도록 구성되어있다. 제안된 모델을 사용하여, 대상점포의 매출분포에 큰 영향을 끼치는 것으로 판단되는 경쟁점포를 일련의 경쟁점포 집합에서 추출하며, 그 결과의 타당성을 검증하도록 한다.
기존의 데이터 마이닝 방법들은 기본적으로 지식 발견의 대상이 되는 데이터 집합이 마이닝 작업 시작 이전에 명확히 정의되는 것으로 가정하며 이러한 가정은 고정적으로 정의된 특정 데이터 집합에 내재된 정보 추출이 데이터 마이닝의 목적이 될 때 유효하다. 또한, 기존의 데이터 마이닝 방법들은 대용량의 데이터 집합에 대한 마이닝 결과를 얻는데 있어서 상당한 처리 시간을 요구한다. 따라서, 새로운 트랜잭션 데이터가 지속적으로 추가되는 데이터 스트림에서 추가된 트랜잭션의 정보들을 포함하는 최신의 마이닝 결과를 최대한 빠른 시간 안에 얻기를 기대하는 실시간 처리 환경에서는 기존의 데이터 마이닝 방법을 적용하는 것이 거의 불가능하다. 이러한 목적에 부합하기 위해서 본 논문에서는 새로운 데이터 마이닝 개념인 개방 데이터 마이닝을 제안한다. 개방 데이터 마이닝에서는 새로운 트랜잭션이 발생함에 따라 이전에 발생한 트랜잭션들에 대한 마이닝 결과가 새롭게 갱신되며 따라서 확장된 전체 트랜잭션 집합에 대한 마이닝 결과를 빠르게 얻을 수 있다. 이러한 방법을 효과적으로 구현하기 위해서는 새롭게 출현한 항목에 대한 지연추가와 이전 데이터 집합에 출현한 항목들 중에서 중요하지 않는 항목에 대한 전지작업이 병행되어야 한다. 논문에서 제안하는 알고리즘은 알고리즘의 특성을 파악하기 위한 일련의 다양한 실험을 통해서 검증된다.
최근 학술문헌의 양이 급증하고, 융복합적인 연구가 활발히 이뤄지면서 연구자들은 선행 연구에 대한 동향 분석에 어려움을 겪고 있다. 이를 해결하기 위해 우선적으로 학술논문 단위의 분류 정보가 필요하지만 국내에는 이러한 정보가 제공되는 학술 데이터베이스가 존재하지 않는다. 이에 본 연구에서는 국내 학술문헌에 대해 다중 분류가 가능한 자동 분류 시스템을 제안한다. 먼저 한국어로 기술된 기술과학 분야의 학술문헌을 수집하고 K-Means 클러스터링 기법을 활용하여 DDC 600번 대의 중분류에 맞게 매핑하여 다중 분류가 가능한 학습집합을 구축하였다. 학습집합 구축 결과, 메타데이터가 존재하지 않는 값을 제외한 총 63,915건의 한국어 기술과학 분야의 자동 분류 학습집합이 구축되었다. 이를 활용하여 심층학습 기반의 학술문헌 자동 분류 엔진을 구현하고 학습하였다. 객관적인 검증을 위해 수작업 구축한 실험집합을 통한 실험 결과, 다중 분류에 대해 78.32%의 정확도와 72.45%의 F1 성능을 얻었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.