• Title/Summary/Keyword: 건축 재료

Search Result 1,203, Processing Time 0.026 seconds

Load Distribution Ratios of Indeterminate Strut-Tie Models for Simply Supported RC Deep Beams - (I) Proposal of Load Distribution Ratios (단순지지 RC 깊은 보 부정정 스트럿-타이 모델의 하중분배율- (I) 하중분배율의 제안)

  • Kim, Byung Hun;Yun, Young Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2A
    • /
    • pp.259-267
    • /
    • 2008
  • The ultimate strengths of reinforced concrete deep beams are governed by the capacity of the shear resistance mechanism composed of concrete and shear reinforcing bars, and the structural behaviors of the beams are mainly controlled by the mechanical relationships according to the shear span-to-effective depth ratio, flexural reinforcement ratio, load and support conditions, and material properties. In this study, a simple indeterminate strut-tie model reflecting all characteristics of the ultimate strengths and complicated structural behaviors is presented for the design of simply supported reinforced concrete deep beams. In addition, a load distribution ratio, defined as a magnitude of load transferred by a vertical truss mechanism, is proposed to help structural designers perform the design of simply supported reinforced concrete deep beams by using the strut-tie model approaches of current design codes. In the determination of a load distribution ratio, a concept of balanced shear reinforcement ratio requiring a simultaneous failure of inclined concrete strut and vertical steel tie is introduced to ensure the ductile shear failure of reinforced concrete deep beams, and the prime design variables including the shear span-to-effective depth ratio, flexural reinforcement ratio, and compressive strength of concrete influencing the ultimate strength and behavior are reflected upon based on various and numerous numerical analysis results. In the companion paper, the validity of presented model and load distribution ratio was examined by employing them to the evaluation of the ultimate strengths of various simply supported reinforced concrete deep beams tested to failure.

Fundamental Properties of Mortar with Magnet-Separated Converter-Slag Powder as SCM (자력 선별 전로슬래그 미분말을 결합재로 활용한 모르타르의 기초특성)

  • Beom-Soo Kim;Sun-Mi Choi;Jin-Man Kim
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.3
    • /
    • pp.161-168
    • /
    • 2023
  • Converter slag is a by-product generated by refining the pig iron produced into molten steel in the blast furnace, occupying about 15 % of the weight of steel production. It has a high free-CaO content that can generate expansion cracks when used for concrete aggregate. This is the main reason to make it difficult to recycle. To solve this problem, government guideline requires that converter slag has to be aged in an open yard for 90 days. However, aging can not be perfectly performed because it entails time and cost. In this study, we tried to investigate the applicability of converter slag as a cementitious material rather than an aggregate by mixing converter slag with mortar formulations. According to the EDS results of the converter slag in the experiment, we found that screening in the aggregate phase was more effective than that in the powder phase. When the particles separated by a magnet in the aggregate state were pulverized and used for concrete up to a 15 % replacement ratio, various engineering characteristics, such as flow, length change, and compressive strength, showed engineering characteristics similar to those of the control mix.

Analysis of Permeability Characteristics for Fly Ash Concrete According to Aggregate Size and Mixing Ratio (골재크기와 배합비에 따른 플라이애시 콘크리트의 투기특성 분석)

  • Eun-A Seo;Do-Gyeum Kim;Chul-Woo Jung;Ho-Jae Lee
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.400-406
    • /
    • 2023
  • In this study, the relationship between the material properties and air permeability characteristics was examined, an experimental method to analyze the air permeability characteristics was presented, and experimental results were derived. The effects of compressive strength and apparent density of hardened concrete on air permeability characteristics were evaluated experimentally. Focusing on the mix proportions used in nuclear power plant concrete structures, concrete test specimens were manufactured and air permeability characteristics were measured according to changes in binder, maximum aggregate size, and water-binder ratio. The apparent density was over 2,400 kg/m3 for the OPC mix and the FA-35 mix, and the air permeability for both mixes were low, in the range of 0.1-0.2 L/min. On the other hand, in the case of the combination of FA-40, FA-45, and FA-M, the apparent density was measured to be less than 2,400 kg/m3 and the air permeability was measured to be more than 0.3 L/min, experimentally verifying that the apparent density is an important factor in air permeability characteristics.

Strength and Thermal Properties of Concrete for Replacement Fine Aggregate with Biochar (잔골재를 바이오차로 치환한 콘크리트의 강도와 열적 특성)

  • Kyoung-Chul Kim;Kwang-Mo Lim;Min-Su Son;Young-Seok Kim;Kyung-Taek Koh
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.425-432
    • /
    • 2023
  • In this study, we aim to develop a carbon-reducing concrete technology by incorporating biochar. Performance evaluation experiments were conducted on concrete mixtures containing biochar with insulating and carbon-capturing properties, which are essential for key infrastructure sectors such as construction and tunnels. Concrete mixtures were designed with different biochar incorporation rates of 0 %, 5 %, 10 %, 15 %, and 20 %, as w ell as w ater-to-binder ratios of 0.25, 0.30, 0.35, and 0.40. To assess the physical properties of each mixture, unit weight, total porosity, and permeability were measured, while mechanical properties were determined through the measurement of concrete compressive and flexural strengths. Key factors for enhancing the insulating effect of carbon-reducing concrete containing biochar were identified through regression analysis, indicating a close correlation among biochar incorporation rate, unit weight, concrete strength, and thermal conductivity. It is anticipated that it can be utilized as an insulating material to enhance thermal performance in northern regions with severe winter climates.

A Effect of Chemical Composition and Replacement Ratio of Limestone Admixture on Initial Cement Characteristics (석회석 혼합재의 화학성분과 치환량이 시멘트 초기 물성에 미치는 영향)

  • Dong-Kyun Suh;Gyu-Yong Kim;Jae-Won Choi;Kyung-Suk Kim;Ji-Wan Woo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.440-448
    • /
    • 2023
  • Utilizing admixture, which is one of the raw material replacement method in the cement industry, is expected to be easily and quickly put to practical use as it is relatively more accessible than other methods. Among cement admixtures, limestone powder is reported to be able to improve cement performance through nucleation effects, chemical effects, and filler effects, so it is a material expected to be suitable as a cement admixture. Meanwhile, as high-quality limestone is depleted around the world, the use of limestone with clay or high magnesia (MgO) content is becoming increasingly inevitable. Therefore, in this study, we attempted to evaluate the suitability of limestone cement as a admixture by measuring the basic properties of limestone cement mixed with limestone of different qualities commonly used in Korea. As a result, the effect of alite reaction promotion was confirmed regardless of the chemical composition of the limestone binder. However, the dilution effect depending on the substitution amount was greater than the chemical composition. It is believed that normal-grade limestone can be used as a mixture as long as the limestone content in cement is within 15 % in this scope of study. In the future, we plan to evaluate the impact of the chemical composition of the limestone mixture through additional experiments depending on the chemical composition of cement.

A Study of Radon Reduction using Panel-type Activated Carbon (판재형 활성탄을 이용한 라돈 저감 연구)

  • Choi, Il-Hong;Kang, Sang-Sik;Jun, Jae-Hoon;Yang, Seung-Woo;Park, Ji-Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.5
    • /
    • pp.297-302
    • /
    • 2017
  • Recently, building materials and air purification filters with eco-friendly charcoal are actively studying to reduce the concentration of radon gas in indoor air. In this study, radon reduction performance was assessed by designing and producing new panel-type activated carbon filter that can be handled more efficiently than conventional charcoal filters, which can reduce radon gas. For the fabrication of our panel-type activated carbon filter, first the pressed molding product after mixing activated carbon powder and polyurethane. Then, through diamond cutting, the activated carbon filter of 2 mm, 4 mm and 6 mm thickness were fabricated. To investigate the physical characteristics of the fabricated activated carbon filter, a surface area and flexural strength measurement was performed. In addition, to evaluate the reduction performance of radon gas in indoor, the radon concentration of before and after the filter passes from a constant amount of air flow using three acrylic chambers was measured, respectively. As a result, the surface area of the fabricated activated carbon was approximately $1,008m^2/g$ showing similar value to conventional products. Also, the flexural load was found to have three times higher value than the gypsum board with 435 N. Finally, the radon reduction efficiency from indoor gas improved as the thickness of the activated carbon increases, resulting in an excellent radon removal rate of more than 90 % in the 6 mm thick filter. From the experimental results, the panel-type activated carbon is considered to be available as an eco-friendly building material to reduce radon gas in an enclosed indoor environment.

건설산업경쟁력 강화와 부실방지대책(안)

  • 한국주택협회
    • 주택과사람들
    • /
    • no.54 s.71
    • /
    • pp.185-206
    • /
    • 1996
  • 1.건설제도의 국제화와 경쟁기반 구축 $\bullet$건설산업을 기획$\cdot$설계$\cdot$시공$\cdot$감리$\cdot$사후관리 등 전 분야에 걸쳐 경쟁력 있는 산업으로 육성-기획$\cdot$설계$\cdot$시공$\cdot$감리$\cdot$유지관리 등 건설산업 전반에 관한 기본사항을 법제화-대규모 공사의 경우 발주자를 대신하여 건설공사의 기획$\cdot$설계$\cdot$발주$\cdot$감리$\cdot$시공관리 등 업무의 전부 또는 일부를 종합적으로 조정$\cdot$관리하는 $\lceil$건설사업관리$\rfloor$제도를 도입 $bullet$건설공사 $\lceil$현장실명제$\rfloor$도입을 통한 하도급제도의 정비-전문건설업자로부터 하도급, 위탁, 고용 등의 형태로 공사에 참여하는 현장근로자를 신고 받아 권익을 보호하고 시공책임도 부과하는 $\lceil$현장실명제$\rfloor$도입 $\bullet$공사완성보증제, 손해배상보증제도를 도입하고, 신용상태 $\cdot$시공능력에 따라 보증 요율 등을 차등화 하여 부실업체를 배제 $\bullet$건설공사관련 각종 계약서와 시방서 등 제기준을 정비하여 발주자$\cdot$시공자 등 건설주체간의 역할과 책임을 명확화$\bullet$건설분쟁을 신속하고 객관적으로 조정$\cdot$중재하기 위하여 $\lceil$건설분쟁중재원$\rfloor$으로 확대 개편 2. 건설인력의 육성과 고용안정$\bullet$경쟁력 제고의 관건인 우수인력 확보를 위하여 대학교육 제도의 개선을 포함한 건설 인력 수급대책을 추진 - 대학의 건설관련 학과 정원을 2000년까지 매년 일정규모로 증원하여 고급기술 인력을 배출 현재 50$\%$에 불과한 건설관련 국가기술자격자를 2000년에 70$\%$까지 제고 - 감리 등 전문인력을 양성하고, 선진외국 감리 회사를 활용하여 국내 업계와의 경쟁을 유도 $\bullet$건설현장의 최일선에서 품질을 담당하고 있는 건설기능공의 고용안정과 복지향상을 위한 획기적인 대책을 마련 - 건설기능공의 자긍심과 사회적 책임의식을 고취하기 위해 기능공이 여러 현장을 전전하여 근무하더라도 경력관리, 공제금 등의 합산 관리가 가능하도록 $\lceil$건설 근로자 복지카드$\rfloor$제도를 도입 *$\lceil$건실시연구단$\rfloor$을 구성$\cdot$구체적인 운영방안을 수립 - 건설 업체 실정에 맞는 현장위주의 기능검정제도 도입 $\cdot$자격증이 현장에서 요구되는 기능수준과 숙련도를 제대로 반영할 수 있도록 검정방법을 현장 실기위주로 개선하고 자격검정업무도 건설협회 등의 자격 검정능력을 향상시켜 위탁$\cdot$시행하는 방안을 검토 3. 공사시행기관의 전문성과 책임성 제고 $\bullet$시장이 개방되어 건설공사가 국제적인 관행에 따라 이루어질 것에 대비하여 시행기관에 계약$\cdot$공사관리 등 전문직공무원을 집중 교육하여 양성 $\bullet$ 조달청이 대행하여 공사계약을 하는 경우라도 설계변경은 발주기관이 자체적으로 할 수 있도록 허용 $\bullet$ 기술직 공무원의 기술향상을 위하여 관련 공무원의 확충, 해외연수, 현장교육 강화 등을 지속적으로 추진 $\bullet$ 충분한 사전조사를 거쳐 사업계획을 수립하도록 $\lceil$건설공사 시행절차$\rfloor$를 규정 $\bullet$ 공사기간 3년 이상의 공사에 대하여는 최대한 계속비사업으로 편성토록 계속비제도의 운영을 활성화 4. 건설현장의 품질관리체제 구축 $\bullet$ 현장배쳐플랜트 설치를 확대하여 레미콘의 품질관리를 일원화하고 현장에서 레이콘을 배합하는 건식공법을 채택 - 현장레미콘생산시설(B/P)설치 확대로 콘크리트 하자에 대한 책임한계 일원화 유도 - 레미콘 재료인 골재$\cdot$시멘트$\cdot$물을 공장에서 혼합하여 공급하는 현행 습식배합 대신에 물만을 현장에서 혼합하는 건식 배합방식을 도입 $\bullet$철강재$\cdot$철구조물의 품질을 보증하기 위하여 일정기술을 갖춘 공장에서만 제작토록 하는$\lceil$공장인증제$\rfloor$를 도입 - 제작시설과 품질관리 등을 심사하여 제작공장을 등급화하고 등급에 따라 철강재 등의 제작업무 범위를 차등화 $\bullet$시설물에 대하여도 시공업체가 제작공장을 등급화하고 등급에 따라 철강재 등의 제작업무 범위를 차등화 $\bullet$시설물에 대하여도 시공업체가 사후관리를 일괄 책임질 수 있도록 $\lceil$시공 및 유지관리 일괄계약제도$\rfloor$를 도입 - 대형교량$\cdot$소각로$\cdot$하수처리장 등 유지관리에 전문성이 요구되는 분야부터 시범적으로 도입 $\bullet$건설자재의 표준화$\cdot$정보화사업을 조속히 추진 5. 건설업체에 대한 지원 강화 $\bullet$일부 공공사업자의 경우 관행화되어 있는 대금일부의 어음 또는 채권지급방법을 단계적으로 축소 $\bullet$매월 감독이나 감리원의 기성확인에 의하여 시공자에게 공사대금을 직접 지급토록 하는 등 대금 지급절차를 간소화 6. 민간 건축물에 대한 안전확보 $\bullet$충실한 설계가 이루어지도록 제도를 개선 - 설계도서 작성기준을 제정하고 다중이용시설에 대하여는 건축심의단계에서 구조검토 등 설계심의를 의무화 $\bullet$대형다중이용시설에 대한 감리 강화 - 감리전문회사 수준의 감리체제로 전환하고 감리대가도 공공수준으로 인상하고 적용요율대로 지도$\cdot$감독 강화

  • PDF

Experimental Study on the Performance Improvement of Velcro Reinforcement through Internal Filling (내부충진을 통한 벨크로 보강재의 성능향상에 대한 실험적 연구)

  • Jeong, Yeong-Seok;Kwon, Minho;Kim, Jin-Sup;Nam, Gwang-Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.4
    • /
    • pp.347-355
    • /
    • 2021
  • During the earthquake, for multi-story structure, if the first floor is soft, the deformation will concentrate on that floor causing a serious damage to the column members which might leads to the collapse of the whole structure like Piloti structure during the Pohang earthquake in Korea. According to the 2016 National Disaster Management Research Institute's "Investigation of Seismic Reinforcement and Cost Analysis of Domestic Non-seismic Buildings", the rate of seismic resistance of private reinforced concrete buildings was 38.3 %. Among them, it was reported that the seismic-resistance ratio of the two to five-story structures was less than 50 %. Accordingly, the government is trying to improve the seismic rate through support projects, but the conventional seismic reinforcement methods are still expensive, and emergency construction is difficult. Therefore, in this study, the field applicability was evaluated by improving the reinforcement method using Velcro, which was developed through the research project of the Ministry of Land, Transport and Maritime Affairs in 2014. In order to improve the performance of the Velcro reinforcement method, introducing the initial tension of Velcro using high foaming rigid urethane filling between the Velcro and concrete of the columns was applied. Additionally, an experiment was conducted to evaluate the ductility of Velcro specimen from the concrete confinement effect. As a result, the ductility of the Velcro specimen was improved compare to Normal specimen. However, the energy dissipation capacity of VELCRO2 is better than VELCRO1, yet the maximum ductility of those two specimens did not show a significant difference. Therefore, the improvement of the internal filler material is still needed to have a better maximum ductility.

A Study on the Ordering Status of Traditional Landscape Design Service in Cultural Heritage (문화재의 전통조경설계용역 발주실태 연구)

  • Kim, Min-Seon;Kim, Choong-Sik;Lee, Jae-Yong
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.39 no.3
    • /
    • pp.33-41
    • /
    • 2021
  • This study identified the scale that traditional landscape design has taken up by analyzing a total of 1037 services for design of cultural heritage that had been ordered by the government agencies from 2018 to 2020, and has drawn characteristics of traditional landscape design focusing on major cases. The results are as follows. First, the number of order cases for traditional landscape design has shown differences annually in the services of design of cultural heritage, but the design amount has been found to have the similar average annually, which confirmed that the same level has been maintained each year. It was found that the number of cases of traditional landscape design requiring responsibilities or participations of landscape engineers for 3 years in the entire design had a high proportion of approximately 26%. Second, the traditional landscape design has required professional knowledge and experiences of landscape engineers that could not be replaced by the business operator for design of cultural heritage consisting of architects. The expertise has been shown differently depending on types of construction. First, the topographical design for the work to build a foundation has required understanding of ground shapes and its elevations and professional knowledge on calculation of the amount of the earth work and the remains maintenance technique etc. The plantation design has required basic knowledge on growth characteristics of trees and the environment for growth and understanding of the vegetation landscape of the past. Meanwhile, the design for traditional pavement and traditional landscape structures and facilities has required the expertise on traditional materials that are different from the modern ones and their processing and construction methods. The understanding of changes to water paths and ecosystem, the principles of fluids, and characteristics of each type of fluid was essential for the design for the ecological landscape work including the maintenance of a water system such as rivers etc. As such, the traditional landscape design has a scale accounting for approximately one fourth of the entire cultural heritage design and requires the expertise differentiated from other fields. This improves the provisions of the current law on limiting the actual design, suggesting the need for the establishment of a traditional landscape design company so that all traditional landscape designs can be carried out by landscape engineers.

An Experimental Study on the Hydration Heat of Concrete Using Phosphate based Inorganic Salt (인산계 무기염을 이용한 콘크리트의 수화 발열 특성에 관한 실험적 연구)

  • Jeong, Seok-Man;Kim, Se-Hwan;Yang, Wan-Hee;Kim, Young-Sun;Ki, Jun-Do;Lee, Gun-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.6
    • /
    • pp.489-495
    • /
    • 2020
  • Whereas the control of the hydration heat in mass concrete has been important as the concrete structures enlarge, many conventional strategies show some limitations in their effectiveness and practicality. Therefore, In this study, as a solution of controling the heat of hydration of mass concrete, a method to reduce the heat of hydration by controlling the hardening of cement was examined. The reduction of the hydration heat by the developed Phosphate Inorganic Salt was basically verified in the insulated boxes filled with binder paste or concrete mixture. That is, the effects of the Phosphate Inorganic Salt on the hydration heat, flow or slump, and compressive strength were analyzed in binary and ternary blended cement which is generally used for low heat. As a result, the internal maximum temperature rise induced by the hydration heat was decreased by 9.5~10.6% and 10.1~11.7% for binder paste and concrete mixed with the Phosphate Inorganic Salt, respectively. Besides, the delay of the time corresponding to the peak temperature was apparently observed, which is beneficial to the emission of the internal hydration heat in real structures. The Phosphate Inorganic Salt that was developed and verified by a series of the aforementioned experiments showed better performance than the existing ones in terms of the control of the hydration heat and other performance. It can be used for the purpose of hydration heat of mass concrete in the future.