• Title/Summary/Keyword: 건축에너지성능

Search Result 336, Processing Time 0.029 seconds

Influence of Sulfate on Thermodynamic Modeling of Hydration of Alkali Activated Slag (알칼리 활성 슬래그의 열역학적 수화모델링에 대한 황산염의 영향)

  • Lee, Hyo Kyoung;Park, Sol-Moi;Kim, Hyeong-Ki
    • Resources Recycling
    • /
    • v.28 no.1
    • /
    • pp.32-39
    • /
    • 2019
  • The present study investigated hydration of alkali activated slag incorporating sulfate as a form of anhydrite by employing thermodynamic modeling using the Gibbs free energy minimization approach. Various parameters were evaluated in the thermodynamic calculations, such as presence of sulfide, precipitation/dissolution of AFt/AFm phase, and the effect of oxic condition on the predicted reaction. The calculations suggested no significant difference in the void volume and chemical shrinkage, which might influence the performance of the mixtures, in spite of various changes of the parameters. Although the types of hydration products and their amount varied according to the input conditions, their variations were smaller range than that induced by water-to-binder ratio. Moreover, it did not affect the amount of C-(N-)A-S-H which was the most important hydration product.

A Framework Development for BIM-based Object-Oriented Physical Modeling for Building Thermal Simulation (객체지향 물리적 모델링 기법을 활용한 BIM기반 통합 건물에너지 성능분석 모델 구축 및 활용을 위한 프레임워크 개발 - 건물 열부하 시뮬레이션 중심으로 -)

  • Jeong, WoonSeong
    • KIEAE Journal
    • /
    • v.15 no.5
    • /
    • pp.95-105
    • /
    • 2015
  • Purpose: This paper presents a framework development for BIM (Building Information Modeling)-based OOPM (Object-Oriented Physical Modeling) for Building Thermal Simulation. The framework facilitates decision-making in the design process by integrating two object-oriented modeling approaches (BIM and OOPM) and efficiently providing object-based thermal simulation results into the BIM environment. Method: The framework consists of a system interface between BIM and OOPM-based building energy modeling (BEM) and the visualization of simulation results for building designers. The interface enables a BIM models to be translated into OOPM-based BEM automatically and the thermal simulation from the created BEM model immediately. The visualization module enables the simulation results to be presented in BIM for building designers to comprehend the relationships between design decisions and the building performances. For the framework implementation, we utilized the Modelica Buildings Library developed by the Lawrence Berkeley National Laboratory as a thermal simulation solver. We also conducted an experiment to validate the framework simulation results and demonstrate our framework. Result: This paper demonstrates a new methodology to integrate BIM and OOPM-based BEM for building thermal simulation, which enables an automatic translation BIM into OOPM-based BEM with high efficiency and accuracy.

Energy Performance of Air-side Economizer System for Data Center Considering Supply Temperature and Design Airflow Rate of CRAH(Computer Room Air Handler) (외기냉방시스템이 적용된 데이터센터 CRAH의 급기온도와 설계 풍량에 따른 에너지성능 분석)

  • Kim, Ji-Hye;Aum, Tae-Yun;Jeong, Cha-Su
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.11
    • /
    • pp.181-188
    • /
    • 2019
  • The purpose of this study is to evaluate the cooling energy saving effects of CRAH supply air temperature(SAT) and design flow rate changes when applying air-side economizer in the data center. MLC(Mechanical Load Component), which is cooling performance indicator of data center, was used to assess the effectiveness of cooling energy savings. It was computed with energy simulation (DesignBuilder) to evaluate the cooling energy performance of 8 different alternatives in a data center. The MLC was 0.31~0.32 regardless of CRAH supply temperature without air-side economizer, and 0.15 to 0.19 value with air-side economizer. That is, cooling energy can be reduced by approximately 40~55% when applying economizer. As the CRAH SAT and design flow rate changed, the MLC values were 0.16 to 0.18 and 0.15 to 0.19, respectively.

Seismic Performance Evaluation of R/C Different Floor Type Interior Beam-Column Joints in the Middle and High-rise Mixed-use Residential Building (중.고층 주상복합 R/C 건축물의 단차형 내부 보-기둥 접합부 내진성능평가)

  • Ha, Gee-Joo;Shin, Jong-Hak;Huh, Mean-Haeng;Hong, Kun-Ho;Ha, Jae-Hoon;Nam, Young-Sik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.453-454
    • /
    • 2009
  • In this dissertation, experimental program was carried out to study the hysteretic behavior of the reinforced different floor type interior beam-column joint repeated cyclic loads under seismic actions. The test results was as follow. The reinforced interior beam-column joint, designed by the different floor type, was increased energy dissipation capacity and maximum load carrying capacity according to the increase of different floor in comparison to standard specimen. And it was also dissimilar to failure mode adjacent to joint region. energy dissipation capacity of each specimen, designed by the different floor type, was increased 1.1${\sim}$1.35 times in comparison to standard specimen.

  • PDF

Development of an End-use Analysis Tool for Existing Buildings Based on Energy Billing Data (고지데이터 기반 기존 건축물의 용도별 에너지사용 현황분석 툴 개발)

  • Kong, Dong-Seok;Park, Jung-Min;Jang, Yong-Sung;Lee, Keon-Ho;Huh, Jung-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.3
    • /
    • pp.128-136
    • /
    • 2015
  • Reducing the building energy consumption has become one of the most important issues. However, the current engineering and technological involvement in energy analysis has been relatively low in the existing buildings. In the existing buildings, end-use analysis must be accompanied to calculate the exact amount in energy savings and such analysis should be conducted based on the energy billing data or measurement data by calibration process. Mostly, detailed energy simulation programs have been proposed for the analysis but, it is difficult to utilize them due to realistic problems. In this paper, we developed an end-use analysis tool that have input function for energy audit data and two case studies were conducted in the real-life office buildings located in Seoul, Korea. Mean Bias Error (MBE) and Coefficient of Variation of Root-Mean- Squreaed-Error (CV(RMSE)) are used for the criteria of comparison. Each index was calculated by using monthly utility bills of electricity and gas consumption. Results showed that MBE and CV (RMSE) represented with acceptable values of -0.1% and 5.7% respectively.

A Study on the Calculation Method of Load standard for ZEB activation (ZEB 활성화를 위한 부하기준 산정 방법 연구)

  • Lee, Hangju;Kim, Insoo
    • Journal of Energy Engineering
    • /
    • v.26 no.4
    • /
    • pp.92-99
    • /
    • 2017
  • In Korea, the zero energy building was designated as the 7 new industries in the Ministry of Land and the 8 new industries in the Ministry of Industry. In order to maximize the insulation performance of the building envelope, improve the efficiency of building equipment, We are aiming. It is necessary to analyze the energy requirements of the buildings (cooling, heating, hot water supply, lighting, ventilation) of buildings with energy efficiency level of 1++ which is equivalent to the zero energy building certification system in Korea, It is aimed to be used as basic data for the advancement of energy building certification system. Zero Energy Building certification is estimated to be 61 buildings by 2017, and the approximate reference value and the first energy requirement for each of the five loads are calculated considering passive and active aspects. It is difficult to say that it is a clear standard because there is a small sample of data for calculating the load standard. However, it is necessary to interpret various methods in order to upgrade the Zero Energy Building certification standard in the future.

Performance Evaluation of Ground Source Heat Pump System Utilizing Energy Pile in Apartment (공동주택에서 에너지 파일을 이용한 지열히트펌프 시스템의 성능 분석)

  • Lee, Jin-Uk;Kim, Taeyeon;Leigh, Seung-Bok
    • KIEAE Journal
    • /
    • v.12 no.4
    • /
    • pp.41-46
    • /
    • 2012
  • In Korea, Apartment houses recently occupy over 80% of all buildings. Ground source system has to be designed to consider feature of apartment house. Most apartment houses use PHC pile to get a bearing power of the soil. Therefore, the purpose of this study is to evaluate performance of ground source heat pump system utilizing energy pile under apartment. Object of experiment is low-energy experiment apartment in Song-do and Energy Pile are applied to 80%, 100% energy reduction model for heat-source. First, performance evaluation of Energy Pile geothermal system was done during summer season. As a result, The COP(coefficient of performance) about geothermal heatpump was approximately 5-6 while cooling. In winter season, Long experiment was performed because it was very important to evaluate ground condition for long time. During heating experiment, Indoor room set temperature was $20^{\circ}C$ and kept constant by heating. Coefficient of performance for heat pump and overall system was calculated. It was 3.5-4.5 for COP and 2.5-3.7 for system COP.

Study of Design Strategy to Reduce Energy Consumption in a Standard Office Building (사무용 건물의 에너지 절감을 위한 요소별 성능 분석 및 디자인 전략에 관한 연구)

  • Yang, Ja-Kang;Kim, Chul-Ho;Kim, Kang-Soo
    • KIEAE Journal
    • /
    • v.16 no.2
    • /
    • pp.23-31
    • /
    • 2016
  • Purpose: Recently energy consumption is rapidly increasing due to continuous development of social evolution in various field. In this situation, there is a lot of effort to reduce this energy consumption in many ways, especially in building energy. Preceding studies already started to analyze the housing area such as zero energy house and passive house by researching annual building energy consumption, but to apply the results of housing to office building is insufficient since it has different consumption tendency. Method: In this study, eQuest program was used for simulation and the base model is selected among standard office building in ASHRAE 90.1. Variables are divided into passive and active factors for comparison. Result: In passive factors, glazing system showed the highest energy saving rate by 21.3% with triple low-e glass and enhancing wall u-value showed the lowest energy saving rate by 3.6% with 0.15 m2/K. In active factors, VAV system showed 30.9% energy saving rate when compared to CAV system, and heat exchanger showed 10.2% energy saving rate. For regeneration energy part, photovoltaic panel generated 10.4% of base annual energy usage.

Displacement Dependency and Capacity Evaluation According to the Cross-Sectional Shape and Aspect Ratio of Steel Rod Dampers (강봉댐퍼의 단면형상과 형상비에 따른 변위의존성 및 성능 평가)

  • Hyun-Ho Lee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.5
    • /
    • pp.89-96
    • /
    • 2023
  • In this study, the displacement dependence, strength, and energy dissipation capacity of the steel rod damper were evaluated. The test variables were cross-sectional shape and aspect ratio. The 6th test specimens were made for performance test. From the test results, it was evaluated that the displacement dependence conditions of design code were satisfied in all specimens. And the strength effect according to the cross-sectional shape was minimal. As a result, the strength and energy dissipation capacity of the aspect ratio of 13.7 were evaluated as excellent.

Evaluation of Reinforcing Performance of Window Protection Device Against Strong Wind (강풍에 대비한 창호보호장치의 보강성능 평가)

  • Park, Won Bin;Kim, Hong Jin
    • Journal of the wind engineering institute of Korea
    • /
    • v.22 no.4
    • /
    • pp.155-161
    • /
    • 2018
  • In modern society, damage caused by strong winds such as typhoons is expected to increase due to urbanization and global warming. In order to test the reinforcement performance of the newly developed window protection device, two-point force test and uniformly distributed load test were carried out on non-reinforced plate glass. It reinforcement performance of the window protection device was evaluated based on the flexural performance improvement. The analytical performance of the window protection device was evaluated by analysis using differential equations of elastic loading method and deflection curve and Midas-Gen. First, the analytical window protection device was evaluated by formulae derived using differential equations of elastic loading and deflection curve. The validity of the derived formulae investigated by comparing the maximum deflection of the central part of the plate with the experimental value and the theoretical value at maximum load. Then the results were compared with those by finite element FE method using Midas-Gen. Under the experimental conditions, with the window protection device, stress reduction effect up to 40% and deflection reduction up to 71.4% under the same load were obtained. It was also found that it is advantageous to perform the FE analysis using the plate element when the performance is evaluated because the error of FE analysis result using plate elements is far less than that using beam elements.