• Title/Summary/Keyword: 건축시공 현장적용

Search Result 343, Processing Time 0.024 seconds

Case Study of the Field-BIM for Precision Construction of Elevator Core Wall in Top-down Project (Top-down 공법 현장에서 엘리베이터 코어월 정밀 시공을 위한 시공 BIM의 적용 사례 연구)

  • Shim, Hak-Bo;Seok, Won-Kyun;Park, Soon-Jeon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.108-109
    • /
    • 2019
  • Top-down construction is a useful method of utilizing the working space, economic benefits and shorten the construction period. Precision construction of the elevator core is very important for safety of the top-down structure. In this study, the layout system for the field-BIM(Building Information Modeling) was used to precisely construct the elevator core in the basement and the ground. Through the layout system, it was possible to process the construction status, review the design results and construction errors, and confirm whether there is or not within the construction error range for elevator installation.

  • PDF

Development of Accident Cases-based Fire Risk Assessment Checklist for Active Response on Construction Sites (사례분석을 통한 건설현장 화재위험도 평가 체크리스트 개발)

  • Shin, Jae-Kwon;Shin, Yoon-Seok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.1
    • /
    • pp.79-86
    • /
    • 2021
  • On the construction site, there exists frequently a high likelihood that a fire accident can lead to a large-scale disaster. In the previous studies, the diverse outcomes have been focused on the improvement of relative statutes and tried to realize the suppression and confrontation of the fire accidents. In this study, the limitations on the site were identified through prior research reviews, and the fire risk assessment checklist was proposed through the analysis of the massive accident cases. The checklist was divided into the prevention and minimization steps and developed into 16 categories of total risk factors. According to the results from the cases applied in this study, if the installation status is checked, such as removing combustibles, and broadcasting facilities for evacuation are installed, it is expected that the casualties will be minimized or zeroed. By developing a fire risk assessment checklist, this study provides the implications of the theoretical and realistic fire accident prevention, and supports the ways to minimize the damage resulted from the fire accidents on construction sites. In the further, deriving universe and common items about repeated occurrences of a work type will be needed as a subsequent research.

A Study on the Performance Evaluation and Field Application of Synthetic Resin Formwork (합성수지 거푸집의 성능평가 및 현장 적용성에 관한 연구)

  • Kim, Tae-Hui;Ahn, Sung-Jin;Lee, Young-Do;Nam, Kyung-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.6
    • /
    • pp.577-584
    • /
    • 2018
  • In This study, length variation test, shock test, and noise test were conducted to evaluate the performance of synthetic resin form. In addition, the handling easiness of synthetic resin form was examined through field application. Results of both thermal length variation test and shock test satisfied the KS standards. for noise test, the result of uro-form was 106.7dB(A) in average while that of synthetic resin form was 100.4dB(A) in average. It is considered that the high sound pressure level of euro-form with this noise characteristic may have negative physical and psychological impact on people who are consistently exposed in the residential area. Finally, there was no warping or bulging of the mold during concrete placement in the field application. Also, the concrete surface finish of synthetic resin form was better than that of euro-form.

A study on the Development of an Eco-friendly Rooftop Waterproofing Method (친환경 옥상방수공법 개발에 관한 연구)

  • Oh, Dong-Sik;Go, Seong-Seok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.5
    • /
    • pp.103-111
    • /
    • 2010
  • This research aims to make a contribution to the development of waterproofing technique for rooftops by analyzing and understanding the problems of the currently used waterproofing method and their causes. To do this, this research developed an eco-friendly waterproofing method that supplements the weaknesses of the conventionally used method by analyzing the problems of leakage resulting from design and construction work to diminish leakage, improving the quality of construction work, reducing labor required and the period of construction, and improving environment alconditions. The characteristics of the newly developed method are comparatively analyzed with the convention alpractices, and are evaluated on the site.

Analysis of the Impact of the Expansion of Direct Construction Works and Suggestions on the Application (직접시공 확대의 영향 분석 및 직접시공의무제도 적용을 위한 대응방안 제언)

  • Lee, Meesung;Kim, Siyeon;Yu, Ilhan;Han, Ju-yeon;Son, JeongWook
    • Korean Journal of Construction Engineering and Management
    • /
    • v.22 no.6
    • /
    • pp.15-23
    • /
    • 2021
  • As the construction production system is reorganized as part of the construction industry innovation plan, direct construction is expanding. According to this trend, this study analyzed the impact and problems of the expansion of direct construction through the position of the construction industry and a study of foreign cases. In addition, by diagnosing the impact of the measures to expand direct construction from various aspects, countermeasures were suggested to suitably apply the direct construction mandatory system. Also, for each alternative, effects and problems were evaluated through interviews with experts in policy/administrative and architecture fields. The alternatives for expanding and improving the efficiency of the direct construction mandatory system derived from this study are four items: granting the discretion of the client, differentiation by scale of construction, utilization of construction guarantee system, and introduction of flexible working group leader system. As a result of the expert interview, all of them were evaluated to have a positive impact directly and indirectly on the expansion of direct construction. This study contributes literature to the application of the direct construction mandatory system by examining the current status of direct construction, and suggests a direction for expanding direct construction through deduction of alternatives for applying the direct construction mandatory system and expert evaluation.

Constructional Verification Evaluation for Securing the Field Quality of Composite Membrane Waterproofing Material (멤브레인 복합 방수재의 현장품질 안정성 확보를 위한 시공성 실증 평가 연구)

  • Kim, Meong-Ji;Lee, Sang-Wook;Kim, Soo-Yeon;Oh, Sang-Keun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.1
    • /
    • pp.87-95
    • /
    • 2021
  • In this study, seven companies(A~G) designated as new construction technology selected and evaluated KS F 2622: Method of test for performance evaluation of membrane roofing systems that are similar to field application conditions. As a result of the test, it was confirmed that although all test specimens exceeded KS standards in the basic physical, it was difficult to obtain field quality performance in weak areas such as joints and vertical parts of the adhesive coating method in water-tightness, sagging resistance, swelling resistance tests except for fatigue(crack behavior) tests.

Field Applicability Evaluation Experiment for Ultra-high Strength (130MPa) Concrete (초고강도(130MPa) 콘크리트의 현장적용성 평가에 관한 실험)

  • Choonhwan Cho
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.1
    • /
    • pp.20-31
    • /
    • 2024
  • Purpose: Research and development of high-strength concrete enables high-rise buildings and reduces the self-weight of the structure by reducing the cross-section, thereby reducing the thickness of beams and slabs to build more floors. A large effective space can be secured and the amount of reinforcement and concrete used to designate the base surface can be reduced. Method: In terms of field construction and quality, the effect of reducing the occurrence of drying shrinkage can be confirmed by studying the combination of low water bonding ratio and minimizing bleeding on the concrete surface. Result: The ease of site construction was confirmed due to the high self-charging property due to the increased fluidity by using high-performance water reducing agents, and the advantage of shortening the time to remove the formwork by expressing the early strength of concrete was confirmed. These experimental results show that the field application of ultra-high-strength concrete with a design standard strength of 100 MPa or higher can be expanded in high-rise buildings. Through this study, we experimented and evaluated whether ultra-high-strength concrete with a strength of 130 MPa or higher, considering the applicability of high-rise buildings with more than 120 floors in Korea, could be applied in the field. Conclusion: This study found the optimal mixing ratio studied by various methods of indoor basic experiments to confirm the applicability of ultra-high strength, produced 130MPa ultra-high strength concrete at a ready-mixed concrete factory similar to the real size, and tested the applicability of concrete to the fluidity and strength expression and hydration heat.

A Study on the Application State of the Fenestration Energy Consumption Efficiency Rating System in Construction Field (소규모 민간건축 시공현장에 있어서 창호에너지 소비효율등급제의 적용 현황에 관한 연구)

  • Kang, Suk-Pyo;Jin, Eun-Mi;Yun, Yeo-Myun;Park, Sang-Eun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.24-25
    • /
    • 2014
  • Up to now, most the fenestration industry is consisted of glazing and window frame in Korea. According to the Fenestration Energy Consumption Efficiency Rating System and Energy Saving Design Standards of Buildings, u-value of fenestration is defined as the value of calculation with glazing and frame. For this reason, when applying for a building permit, in most cases, the official approval test report of the set of windows and doors is used. Nevertheless, in windows construction progresses, most construction manager take delivery of the glazing and frame separately. For those reason, windows and doors are constructed regardless of the report of the Fenestration Energy Consumption Efficiency Rating System in most construction fields. From now on, the research of the connection method between reality of policy and reality of construction fields should be carried out.

  • PDF

Photovoltaic Application in System Formwork Operations of High-rise Building Construction (초고층 시스템거푸집 공사의 태양광에너지 활용 방안 연구)

  • Kim, Tae-Hoon;Lee, Myung-Do;Lee, Ung-Kyun;Cho, Hun-Hee;Kang, Kyung-In
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.2
    • /
    • pp.116-126
    • /
    • 2011
  • Recently, eco-friendly energy has been employed in diverse fields of industry in order to reduce environmental pollution and secure a new growth engine. In particular, practical applications of photovoltaic energy, such as building integrated photovoltaic systems, have been implemented to the construction industry based on the extensive interest in photovoltaic power as an unlimited and sustainable energy. While the construction of a high-rise building requires large amounts of energy, methods of reducing energy consumption in the construction phase have rarely been studied. Based on this motivation, the research proposes a photovoltaic based formwork system (PVFS), and then performs a design and feasibility analysis for its application to the construction of a high-rise building. Using a case study, the research implements various analyses, including area, position, and total allowable weight required by PVFS, and evaluates the influences of PVFS on the construction processes, as well as its economic feasibility. The proposed PVFS can be adopted to a real-world project in the near future, depending on the advancement of technology and economic feasibility. The results of this research will contribute to establishing a construction environment that promotes a reduction of energy consumption by using eco-friendly energy in the construction phase.

A Study on the Comparison of Building Data Using 3D Scanning (3D 스캐닝 활용 건축물 데이터 비교에 관한 연구)

  • Hwang, Byeong Yeon;Park, Jong Ki;Lee, Tae Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.50-56
    • /
    • 2021
  • This study examines 3D scanning and how it is used in the construction field. 3D scanning technology was applied to a real space and compared with drawings in the planning and construction stages. 3D scanning technology has been widely applied in the field of construction, design, construction, and safety. The results of comparing 3D scanning data with drawings are as follows. First, the external shape and dimensions do not show much difference. Second, the internal shape and dimensions are different. Third, indoor lighting layouts are different in all buildings. 3D scanning should be an essential element in the construction stage before completion and should be used for supervision tasks such as material management, improving the efficiency of construction, and safety management through continuous 3D scanning using automation and robots. Follow-up studies in the field of architecture, such as BIM and process management, will be needed.