• Title/Summary/Keyword: 건축물 이력

Search Result 82, Processing Time 0.028 seconds

History Management Technology of Building Construction and Maintenance Using Vector Photo Information and BIM (벡터사진 정보와 BIM을 활용한 건축물의 시공·유지관리 이력관리기술)

  • Kim, Kyoon-Tai;Lim, Myung-Gu;Kim, Gu-Taek
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.6
    • /
    • pp.605-613
    • /
    • 2014
  • Recently proposed intelligent images are generating, storing and managing along with existing image information and 5W1H information. Therefore, these vector images can be useful in searching and managing photos taking during building construction and maintenance processes. In addition, when the vector photos, a key to the intelligent image, is linked with BIM, it is possible to find BIM objects by utilizing information included in vector photos. And if the taken vector photo is saved as attributes of the extracted object, the vector photo can be managed as the historical data. Furthermore, this new technology will contribute to make the management of construction information more efficiently. This study is about the development of the technology of extracting BIM objects from vector photo information and managing the attributes of the extracted objects. Also the prototype modules was developed and tested to evaluate the processes of setting reference points, converting coordinate system, calculating positions, and so on. Through these processes, it was confirmed that the possibility of extracting BIM objects from vector photos and of managing attribute data of objects.

Estimation of Interstory Drift for Moment Resisting Reinforced Concrete Frames Using Equivalent SDOF System (등가 1자유도계를 이용한 철근콘크리트 골조건물의 층간변위 응답 산정)

  • Kang, Ho-Geun;Jun, Dae-Han
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.5 s.39
    • /
    • pp.25-33
    • /
    • 2004
  • To evaluate the seismic capacity of a multistorey building structures in performance based seismic design, it is needed to convert MDOF model into equivalent SDOF model. This paper presents predictions for interstory drift of multistorey structures using method of converting a MDOF system into an equivalent SDOF model. The principal objective of this investigation is to evaluate appropriateness of converting method through performing nonlinear time history analysis of a multistory building structures and an equivalent SDOF model. Comparing the interstory drift of multistorey structures calculated by time history analysis and those evaluated by an equivalent SDOF model, the adequacy and the validity of converting method is verified. The conclusion of this study is following; A method of converting a MDOF system into an equivalent SDOF model through the nonlinear time history response analysis is valid. Inelastic first mode shapes are expected to be more accurate than elastic first mode shapes in obtaining interstory drift of multistorey structures from equivalent SDOF model.

Study on Hydration Properties of High Strength Mass Concrete to apply Precast Concrete (PC 적용을 위한 고강도 매스콘크리트의 수화특성에 관한 연구)

  • Park, Heung-Lee;Kim, Sung-Jin;Lee, Hoi-Keun;Lee, Seung-Hoon;Park, Byung-Keun;Jung, Sang-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.661-664
    • /
    • 2008
  • As architectures have recently become high-risers and megastructured, stable high strength products have been ensured. Accordingly, use of precast concrete accouplement has been increased in order to facilitate air compression and rationalize construction. Since not only external heating but also internal temperature rise caused by the accumulation of cement hydration heat in manufacturing process, precast concrete members with large cross-section used for high-rise mega-structure's columns and beams may exhibit different temperature history compared to the precast concrete members for wall and sub-floor with relatively small cross-sections. Therefore, this study aims to elucidate the characteristics of temperature history of mass concrete members cast with high-strength concrete for precast concrete application. In this study, large cross-sectional precast concrete mock-up, unit cement quantity, and temperature histories in manufacturing precast concrete member under different curing condition were inclusively investigated.

  • PDF

Seismic Retrofitting of Existing Reinforced Concrete Columns Using Binding Column Method (외부부착형 BCM공법으로 보강된 철근콘크리트 기둥의 내진보강)

  • Hur, Moo-Won;Park, Tae-Won;Lee, Sang-Hyun;Park, Hyun-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.119-126
    • /
    • 2022
  • This study proposed a BCM(Binding Column Method) that can reinforce the insufficient seismic force of piloti buildings that are not designed for seismic resistance. In addition, 4 reinforcement specimens and 1 reference specimen were manufactured for the proposed seismic reinforcement method. The effect of improving seismic performance before and after reinforcement was examined through repeated loading tests. As a result of experiment, seismic reinforcement specimen with BCM system showed hysteretic characteristics of a large ellipse with great energy dissipation ability and increased strength and stiffness, while reference specimen showed rapid reduction in strength and brittle shear failure column. In addition, it can be seen that the reinforcing effect is improved as the gap is narrow, the torque is large, and the thickness of the L-shaped steel sheet is thicker. The SC4 specimen showed the best seismic performance reinforcement effect.

Nonlinear Response Analysis of Multi-Degree-of-Freedom Building Structures Using Response Spectrum Method (응답스펙트럼법에 의한 고층 건축물의 탄소성 지진응답해석법)

  • Jun, Dae-Han
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.4
    • /
    • pp.1-9
    • /
    • 1997
  • This paper examined various aspects of a linear and a nonlinear response spectrum method in seismic response analysis of multi-story building structures. The response spectrum method that has been widely used in the analysis of linear structures was proposed different mode superposition method by several ivestigators, and the differences between combinations with an elastic modal analysis reviwed closely. It seems, however, that this method is not used to nonlinear seismic analysis. It is the purpose of this paper to propose an alternative method by means of which a nonlinear MDOF structure with long period may be analysed by an extention of response spectrum method. For nonlinear seismic analysis of high-rise building structures using technique proposed in this study, it is intended to serve primarily as a tool in preliminary designs instead of time history analysis.

  • PDF

Evaluation of Nonlinear Response for Moment Resisting Reinforced Concrete Frames Based on Equivalent SDOF System (등가 1 자유도계에 의한 철근콘크리트 모멘트 골조구조의 비선형 지진응답 평가법의 검토)

  • 송호산;전대한
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.1
    • /
    • pp.9-16
    • /
    • 2003
  • To evaluate the seismic performance of multistory building structures use an equivalent SDOF model to represent the resistance of the structure to deformation as it respond in its predominant mode. This paper presents a method of converting a MDOF system into an equivalent SDOF model. The principal objective of this investigation is to evaluate appropriateness of converting method through perform nonlinear time history analysis of a multistory building structures and an equivalent SDOF model. The hysteresis rules to be used an equivalent SDOF model is obtained from the pushover analysis. Comparing the peak inelastic response of a moment resisting reinforced concrete frames and an equivalent SDOF model, the adequacy and the validity of the converting method is verified. The conclusion of this study is following; A method of converting a MDOF system into an equivalent SDOF model through the nonlinear time history response analysis is valid. The representative lateral displacement of a moment resisting reinforced concrete frames is close to the height of the first modal participation vector \ulcorner$_1{\beta}$${_1{\mu}}=1$. It can be found that the hysteresis rule of an equivalent SDOF model have influence on the time history response. Therefore, it necessary for selecting hysteresis rules to consider hysteresis characteristics of a moment resisting reinforced concrete frames.

Inelastic Time History Analysis of an Unbraced 5-Story Steel Framed Structure for Arrangement of Semi-Rigid Connection (반강접 접합부 배치에 따른 비가새 5층 철골골조구조물의 비탄성 시간이력해석)

  • Kang, Suk-Bong;Kim, Sin-Ae
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.4
    • /
    • pp.313-324
    • /
    • 2010
  • In this study, an unbraced five-story steel-framed structure was designed in accordance with KBC2005 to understand the features of structural behavior for the arrangement of semi-rigid connections. An inelastic time history analysis of structural models was performed, wherein all the connections were idealized as fully rigid and semi-rigid. Additionally, horizontal and vertical arrangements of semi-rigid connections were used for the models. A fiber model was utilized for the moment-curvature relationship of a steel beam and a column, a three-parameter power model for the moment-rotation angle of the semi-rigid connection, and a three-parameter model for the hysteretic behavior of a steel beam, column, and connection. The base-shear force, top displacement, story drift, required ductility for the connection, maximum bending moment of the column, beam, and connection, and distribution of the plastic hinge were investigated using four earthquake excitations with peak ground acceleration for a mean return period of 2,400 years and for the maximum base-shear force in the pushover analysis of a 5% story drift. The maximum base-shear force and story drift decreased with the outer vertical distribution of the semi-rigid connection, and the required ductility for the connection decreased with the higher horizontal distribution of the semi-rigid connection. The location of the maximum story drift differed in the pushover analysis and the time history analysis, and the magnitude was overestimated in the pushover analysis. The outer vertical distribution of the semi-rigid connection was recommended for the base-shear force, story drift, and required ductility for the connection.

Dynamic Responses of Base Isolation Devices for Telecommunication Equipment in Building Structures (건축물 내 방송통신설비를 위한 면진장치의 동적거동)

  • Jeong, Saebyeok;Choi, Hyoung-Suk;Seo, Young-Deuk;Jung, Donghyuk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.1
    • /
    • pp.39-48
    • /
    • 2022
  • In earthquake situations, broadcasting and communication services are directly linked to rapid on-site rescue and effective restoration works. Recently, a variety of base isolation devices are widely introduced on building floors to avoid critical seismic damages of telecommunication facilities. However, in buildings with long fundamental periods, those devices may have undesirable amplification of seismic responses due to resonance effect between the building floors and base isolation devices. This study performs the seismic safety evaluation of two types of base isolation devices deployed for telecommunication facilities in mid- and high-rise buildings through numerical and experimental approaches. It is found that mid- and high-rise buildings can have low-frequency dynamic responses at the top floor when being subjected to design basis earthquake loading. Furthermore, bi-directional shake table testing demonstrated that the selected base isolation devices can exhibit unstable dynamic behaviors under such low-frequency excitations of the floor.

Drift Control of the Structure Using Elasto-Plastic Hysteretic Dampers in High Rise Buildings (탄소성 이력댐퍼를 적용한 초고층 건축물의 변위제어)

  • Park, Ji-Hyeong;Park, Tae-Won;Kim, Ook-Jong;Lee, Do-Bum
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.851-856
    • /
    • 2007
  • Recently, the matter controlling lateral drift is important in high rise buildings, In particular, seismic control dampers, such as mass damper and hysteretic damper, are emerging in the field of actively reducing drift. But. seismic control dampers have weak points with the lack of quantitative analysis and maintenance of the device. Accordingly, in this study we examine the structural characteristic of Steel Elasto-Plastic Hysteretic Damper, which is needless of maintenance, and then consider the basic conditions in the design and construction of the optimal seismic control effect which uses this device.

  • PDF

Hysteretic Behavior of Diagonally Reinforced Concrete Coupling Beams According to Aspect Ratio and Volume Fraction of Steel Fiber Under Cyclic Loading (반복하중을 받는 대각보강된 철근콘크리트 연결보의 강섬유 형상비와 혼입률에 따른 이력거동)

  • Choi, Ji-Yoon;Son, Dong-Hee;Bae, Baek-Il;Choi, Chang-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.3
    • /
    • pp.84-91
    • /
    • 2022
  • In this study, an experimental study was conducted to analyze the hysteresis behavior according to the steel fiber aspect ratio and volume fraction of diagonally reinforced concrete coupling beams under to cyclic loading. The aspect ratio and volume fraction of the steel fibers were set as the main variables, and 4 specimens were fabricated in which the amount of transverse reinforcement of the coupling beam suggested in the domestic building structural standard was relaxed by about 53%. In the experiment, cyclic loading experiments were performed in the displacement control method in accordance with ACI 374.2R-13, and as a result of the experiment, it was found that all specimens containing steel fibers exceeded the nominal shear strength suggested by the current structural standards. As the aspect ratio of the steel fibers increased, the steel fibers prevented the buckling of the diagonal reinforcement, and the bridging effect of the steel fibers held the crack surface of the concrete. The shear strength, stiffness reduction and energy dissipation capacity of the specimens containing steel fibers were superior to those of the Vf0 specimens without steel fibers. Therefore, it is judged that the steel fiber reinforced concrete can relieve the details of the transverse reinforced.