• Title/Summary/Keyword: 건축물 높이

Search Result 177, Processing Time 0.032 seconds

A Study on the Quality Properties When Applying Recycled Aggregate Concrete for the Construction Standard Mitigation (건축기준 완화를 위한 순환골재 콘크리트 적용 시의 품질 특성 연구)

  • Woo, Gyeong-Sub;Kim, Jung-Ho;Lee, Sea-Hyun;Oh, Jung-Keun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.3
    • /
    • pp.63-69
    • /
    • 2020
  • The volume of construction waste material from the entire waste material volume in Korea is approximately 47.3% to take the biggest ratio, and from them, the waste concrete takes up approximately 62.8% that recycling is an urgent issue to address. Therefore, the government recommends more diverse and broader facilitation of the recycled aggregate in order to promote recycling the construction waste materials. In addition, when using concrete recycled aggregate in building, building standard such as floor area ratio and building height are being mitigation. The standard is a condition that mitigation the floor area ratio by up to 15% when using up to 25% of concrete recycled aggregate. Therefore, this study reviewed the relaxation of construction of construction standards when using concrete recycled aggregate in order to actively recommend the use of concrete recycled aggregate. And using the recycled coarse aggregate among the recycled aggregate, the appropriate mixing time in the batch plant according to the substitution rate was derived. In addition, using recycled aggregate admixture in order to improve the drying shrinkage, did comparative analysis about physical and mechanical property of concrete.

Experimental study on ultra-high strength concrete(130 MPa) (초고강도 콘크리트(130MPa)에 대한 실험적 연구)

  • Cho Choonhwan;Yang Dong-il
    • Journal of the Korea Institute of Construction Safety
    • /
    • v.6 no.1
    • /
    • pp.12-18
    • /
    • 2024
  • High-rise, large-scale, and diversification of buildings are possible, and the reduction of concrete cross-sections reduces the weight of the structure, thereby increasing or decreasing the height of the floor, securing a large number of floors at the same height, securing a large effective space, and reducing the amount of materials, rebar, and concrete used for designating the foundation floor. In terms of site construction and quality, a low water binder ratio can reduce the occurrence of dry shrinkage and minimize bleeding on the concrete surface. It has the advantage of securing self-fulfilling properties by improving fluidity by using high-performance sensitizers, making it easier to construct the site, and shortening the mold removal period by expressing early strength of concrete. In particular, with the rapid development of concrete-related construction technology in recent years, the application of ultra-high-strength concrete with a design standard strength of 100 MPa or higher is expanding in high-rise buildings. However, although high-rise buildings with more than 120 stories have recently been ordered or scheduled in Korea, the research results of developing ultra-high-strength concrete with more than 130 MPa class considering field applicability and testing and evaluating the actual applicability in the field are insufficient. In this study, in order to confirm the applicability of ultra-high-strength concrete in the field, a preliminary experiment for the member of a reduced simulation was conducted to find the optimal mixing ratio studied through various indoor basic experiments. After that, 130 MPa-class ultra-high-strength concrete was produced in a ready-mixed concrete factory in a mock member similar to the life size, and the flow characteristics, strength characteristics, and hydration heat of concrete were experimentally studied through on-site pump pressing.

THE FORMAL ANALYSIS OF PANTHEON IN ROME IN RELATION TO THE SOLAR ANGLES (로마 판테온의 일조특성 연구)

  • Lim, Choong-Shin
    • Journal of architectural history
    • /
    • v.7 no.4 s.17
    • /
    • pp.191-198
    • /
    • 1998
  • The form of Pantheon in Rome is graphically analyzed in relation to the angle of the Sun that varies through four seasons of the year. These are worked out in the Autocad drawing files for exactitude and efficiency. Some of the results suggest that the Pantheon is carefully designed to predict the equinoxes and the solstices.

  • PDF

Shear Strength Estimation Model for Reinforced Concrete Members (철근콘크리트 부재의 전단강도 산정모델)

  • Lee, Deuckhang;Han, Sun-Jin;Kim, Kang Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.1-8
    • /
    • 2020
  • This study presents a shear strength estimation model, in which the shear failure of a reinforced concrete (RC) member is assumed to be governed by the flexure-shear mechanism. Two shear demand curves and corresponding potential capacity curves for cracked tension and uncracked compression zones are derived, for which the bond mechanism developed between reinforcing bars and surrounding concrete is considered in flexural analysis. The shear crack concentration factor is also addressed to consider the so-called size effect induced in large RC members. In addition,unlike exising methods, a new formulation was addressed to consider the interaction between the shear contributions of concrete and stirrup. To verify the proposed method, an extensive shear database was established, and it appeared that the proposed method can capture the shear strengths of the collected test specimens regardless of their material properties, geometrical features, presence of stirrups, and bond characteristics.

A Study on Classifications and Trends with Convergence Form Characteristics of Architecture in Tall Buildings (초고층빌딩의 융합적 건축형태 분류와 경향에 관한 연구)

  • Park, Sang Jun
    • Korea Science and Art Forum
    • /
    • v.37 no.5
    • /
    • pp.119-133
    • /
    • 2019
  • This study is as skyscrapers are becoming increasingly taller, more constructors have decided the height alone cannot be a sufficient differentiator. As a result, atypical architecture is emerging as a new competitive factor. Also, it can be used for symbolizing the economic competitiveness of a country, city, or business through its form. Before the introduction of digital media, there was a discrepancy between the structure and form of a building and correcting this discrepancy required a separate structural medium. Since the late 1980s, however, digitally-based atypical form development began to be used experimentally, and, until the 2000s, it was used mostly for super-tall skyscrapers for offices or for industrial chimneys and communication towers. Since the 2000s, many global brand hotels and commercial and residential buildings have been built as super-tall skyscrapers, which shows the recent trend in architecture that is moving beyond the traditional limits. Complex atypical structure is formed and the formative characteristics of diagonal lines and curved surfaces, which are characteristics of atypical architecture, are created digitally. Therefore, it's goal is necessary to identify a new relationship between the structure and forms. According to the data of Council on Tall Buildings and Urban Habitat (CTBUH), 100-story and taller buildings were classified into typical, diagonal, curved, and segment types in order to define formative shapes of super-tall skyscrapers and provide a ground of the design process related to the initial formation of the concept. The purpose of this study was to identify the correlation between different forms for building atypical architectural shapes that are complex and diverse. The study results are presented as follows: Firstly, complex function follows convergence form characteristics. Secondly, fold has inside of architecture with repeat. Thirdly, as curve style which has pure twist, helix twist, and spiral twist. The findings in this study can be used as basic data for classifying and predicting trends of the future super-tall skyscrapers.

Full Scale Tests of Concrete Filled Steel Tube Column using High Fluidity Concrete (고유동 콘크리트를 이용한 콘크리트 충전강관 기둥의 실물대 시공실험)

  • Kim Ook-Jong;Lee Do-Bum
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.222-227
    • /
    • 2001
  • Full scale construction tests of CFT(concrete filled steel tube) column to solve construction problem and to confirm quality were performed in apartment site. To improve construction efficiency, the tests has been accomplished two stages after the tests for material mixing design had been completed. In the first stage, the experimental variables were the placing methods, existence of guiding pipe, placing velocity and drop height and the height of specimen were $3.6{\cal}m$. In the second stage, Filling steel tube of 9.6m height with concrete was performed by two ways, that is, the pump-up method and the dropping method. The filled condition of the concrete and concrete strength distribution according to the column height were checked and the quality of the CFT column was confirmed.

  • PDF

The Correlation between Rheological Properties and Pumpability of High Performance Concrete from High-Rise Pumping Monitoring (초고층 압송계측을 통한 고성능 콘크리트의 유동특성과 압송성능과의 상관관계)

  • Kim, Gyu-Dong;Han, Cheon-Goo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.3
    • /
    • pp.291-297
    • /
    • 2015
  • In this study, the evaluation and the analysis of the correlation between rheological properties and pumpability of high performance concrete, C80A which was applied to the height of from 200 m to 350 m in a super tall building, was carried out by measuring pumping pressure and flow rate, testing concrete properties at before and after pumping. As the results, C80A had satisfactory properties of fresh and hardened concrete to the requirements even after pumping and the maximum pumping pressure showed increase of 10~15% at every 50m higher pumping and the average flow rate showed the above $25m^3$ per hour which means proper productivity. Additionally it was verified that pumping pressure and friction factor in pipeline are inversely proportional to slump flow and showed a tendency to increase according to the higher T-500 value.

The Facade Improvement of Complexed Commercial Building Considering Open Signboard - Focused on Commercial district in Chnagwon - (옥외광고물 설치를 고려한 복합상업건물 입면개선 - 창원시 일반상업지구를 중심으로 -)

  • Yu, Jin-Sang;Seo, You-Seok
    • Archives of design research
    • /
    • v.20 no.3 s.71
    • /
    • pp.191-202
    • /
    • 2007
  • In these days, open signboard system is controlled by administrative policy and law, but there is no consideration for different types of building. As such, this study aims to propose planning criteria for streetside commercial buildings, such as elevation and mass design of buildings, layout of signboard attached to the building elevation with consideration for streetscape. In mass planning for streetside commercial buildings, the building type with front open space keeps lower open signboard density than the building type directly leading to the street. It is desirable that open signboard of lower floor part is attached by a horizontal type, open signboard of low medium floor part by a projected vertical type, open signboard of high medium floor part and roof part with a minumum attachment of open signboard. As for elevation planning relative to open signboard, it is desirable that an irregular wall type is more useful than a regular wall type to control open signboard. And in all cases, horizontal element facade has a handicap to control the quantity of signboard. If the building has a corner, the piloti should be used in the corner of lower story for smooth circulation of pedestrians and emphasizing the transparency of elevation. Specially, in the case of a round corner, the corner should be emphasized by the composition of high transparent mass.

  • PDF

Estimation of Velocity Pressure Exposure Coefficient using GIS (GIS를 이용한 풍속고도분포계수 산정)

  • Seong, Min-Ho;Choi, Se-Hyu
    • Spatial Information Research
    • /
    • v.19 no.1
    • /
    • pp.13-19
    • /
    • 2011
  • As an urbanization is in progress, the change of the planimetric features and topography including high-rise residential buildings commonly occur. The change of the planimetric features and topography causes occurrence of the strong wind and wind speed increase or decrease due to the effect of planimetric features and topography on the windward side even though the wind blows with the same speed. In the design standard, this change by wind speed is defined as the velocity pressure exposure coefficient, the value of coefficient is estimated and reflected by ground surface roughness, but in a reality, ground surface roughness is determined in accordance with the subjective judgement of designer and then the velocity pressure exposure coefficient is estimated, moreover the research and data for classification of ground surface roughness are insufficient. In this paper, we will estimate the velocity pressure exposure coefficient by the quantified method for classifying ground surface roughness by using GIS according to the height of a building targeting area where high-rise residential buildings are built lately. When the structure subjected to wind load is designed, reasonability of design and safety of structure will be more improved by using the estimation method of velocity pressure exposure coefficient presented in this study.

Basic Study for Setting Service Life of Tower Crane (타워크레인 사용 연한 설정을 위한 기초 연구)

  • Kim, Ki-Hyuke;Oh, Chae-Won;Lee, Donghoon
    • Journal of the Korea Institute of Construction Safety
    • /
    • v.2 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • Recently, as development of building construction technology, height of building continues increase. But, there is no clear ground of service life of tower crane. So, accident in the tower crane continues to occur. In addition to Korea, there is no clear ground for the serive life of tower cranes overseas. For this reason, this study aims to establish the maximum service life of tower crane. Accidents in tower cranes continues to increase, and the cause of the accident is that there are no ground of limitations for service life of tower cranes. Therefore, in this study, the maximum service life of the tower crane was calculated by using the information of the hoisting case of the tower crane to limit the model year of the tower crane. The results of this study are as follows; As the number and time of the hoisting work increases, the maximum service life of the tower crane decreases. In addition, since this study refers to European standards, it is necessary to establish standards for domestic situations. Result of this study, we expect decrease accidents in tower crane. And it is expected that the service life of tower crane will be more clear if this study is developed.