• Title/Summary/Keyword: 건조수축률

Search Result 124, Processing Time 0.023 seconds

Potashborosilicate glass 첨가에 따른 Fluormica glass-ceramics의 소결특성에 관한 연구

  • 김병일
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.5 no.2
    • /
    • pp.1-6
    • /
    • 1998
  • B2O3F2를 함유한 Fluormica glass-ceramics 분말과 Potashborosilicate glass 분말을 이용하여 저온소결용 기판을 제조하기 위하여 제조한 그린시트의 특성 및 소결체의 소결 특 성을 평가하였다. 기판 제조용 슬러리를 제조하기 위해 결정화유리분말에 Potashborosilicate glass 분말을 각각 0. 25, 50wt%를 혼용하였다. Doctor blade법으로 그린시트를 제조한후 그 특성을 평가한 결과 건조수축률은 15.2~30.7% 온도상승에 따른 유기물의 탈지온도는 414$^{\circ}C$(2시간)로 선정하였다. 그린시트는 800~120$0^{\circ}C$사이에서 소성하여 소결특성을 평가하였 다. 소결 수축률은 17.5~18.5% 겉보기 기공률은 16.53~20.07%였다.

Drying characteristics and physical properties of medicinal and edible mushrooms (약용버섯과 식용버섯의 건조방법에 따른 품질특성)

  • Kim, Bo-Min;Jung, Eun-sun;Aan, Yong-hyun;Hwang, In-Wook;Chung, Shin-Kyo
    • Food Science and Preservation
    • /
    • v.23 no.5
    • /
    • pp.689-695
    • /
    • 2016
  • In this study, the drying characteristics of medicinal (Ganoderma lucidum, Phellinus linteus) and edible (Pleurotus eryngii, Lentinus edodes) mushrooms were investigated. Their shrinkage ratios, Hunter's color values, and rehydration ratios were evaluated. Mushrooms were cut with rectangular (1 cm) and square ($1{\times}1cm$) shapes, and dried in the room temperature and at $50^{\circ}C$ and $70^{\circ}C$ using hot-air dryer. Initial moisture contents of edible mushrooms were higher than those of medicinal mushrooms, whereas final moisture contents were vice versa. Drying rate was the highest when drying at $70^{\circ}C$ (p<0.05). Moreover the drying rate of square slices was higher than that of rectangular slices (p<0.05). The shrinkage ratios of both medicinal mushrooms and edible mushrooms were the least when drying at $50^{\circ}C$ and $70^{\circ}C$, respectively (p<0.05). The changes of color values were less in the medicinal mushrooms dried in the room temperature than in the hot-air dried medicinal mushrooms (p<0.05). However, in case of edible mushrooms, the changes of color values were less in the hot-air dried mushrooms (p<0.05). Rehydration ratios of medicinal mushrooms dried at $50^{\circ}C$ was the highest (p<0.05). In contrast, rehydration ratios of edible mushrooms was the highest when drying in the room temperature (p<0.05). Thus, the hot-air drying at $50^{\circ}C$ would be suggested as the efficient drying method for both medicinal mushrooms and edible mushrooms.

Simplified Evaluation of Long-Term Deflection of Reinforced Concrete Flexural Members (철근콘크리트 휨재의 장기처짐 예측을 위한 간략 평가)

  • Chang, Dong-Woon;Kang, Jee-Hoon;Chae, Seung-Yoon;Kim, Jae-Yo;Eom, Tae-Sung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.6-9
    • /
    • 2011
  • 지속하중을 받는 철근콘크리트 휨부재는 크리프, 건조수축 등 장기거동에 의하여 처짐이 증가된다. ACI318-08, KCI 2007 등 현행 구조설계기준의 장기처짐 평가방법은 인장 및 압축 철근비, 배근상세, 재료 강도 등 설계변수에 따른 장기처짐의 변화를 합리적으로 고려하기 어렵다. 본 연구에서는 장기거동에 의한 힘의 평형조건과 변형률 적합조건을 사용하여 크리프와 건조수축에 의한 철근콘크리트 균열단면의 장기변형을 예측하는 간략 평가식을 제안하였다. 장기변형 평가 시 콘크리트와 철근은 선형탄성거동을 가정하였고, 시간에 따른 콘크리트와 철근 사이의 응력재분배를 고려하기 위하여 재령보정탄성계수법을 적용하였다. 변수연구 및 검증 결과, 철근콘크리트 휨재의 장기처짐은 설계변수의 영향으로 달라질 수 있고, 제안된 방법은 이러한 장기처짐의 변화를 비교적 정확하게 예측하는 것으로 나타났다.

  • PDF

Characteristics of Drying and Autogeneous Shrinkage in HPC with 65% Replacement of GGBFS (고로슬래그 미분말을 65% 치환한 고성능 콘크리트의 자기 및 건조수축 특성)

  • Jang, Seung-Yup;Ryu, Hwa-Sung;Yoon, Yong-Sik;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.3
    • /
    • pp.54-59
    • /
    • 2017
  • GGBFS (Ground Granulated Blast Furnace Slag) is a byproduct with engineering advantages and HVSC (High Volume Slag Concrete) is widely attempted due to active utilization and reduction of eco-load. In the present work, characteristics of drying shrinkage and early-aged behavior are evaluated for the concrete with 65% replacement ratio of GGBFS and 50MPa of design strength. For the work, 3 different mix conditions are considered and several tests including slump flow, compressive strength, drying and autogeneous shrinkage are performed. From the test, OPC 100 mixture without replacement shows higher strength development before 7 days, however the strength reduction in concrete replaced with GGBFS is not significant due to sufficient free water for cement hydration. OPC 100 mixture also shows significant drying shrinkage due to a great autogeneous shrinkage before 3 days. In the concrete with GGBFS replacement, the drying shrinkage behavior is improved due to relatively small deformation by autogeneous shrinkage. The mixture (OPT BS 65) with lower w/b ratio (0.27) and unit content of water ($160kg/m^3$) shows more improved shrinkage behavior than BS 65 mixture which has simple replacement of GGBFS with 0.30 of w/b and $165kg/m^3$ of water unit content.

The Properties of Concrete Incorporating Stone Powders as Part of Fine Aggregates (잔골재의 일부로 사용된 부순골재 미분말이 콘크리트 성질에 미치는 영향)

  • Kang, Su-Tae;Seo, Jun-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.5
    • /
    • pp.116-122
    • /
    • 2016
  • This study was intended to evaluate the properties of concrete incorporating stone powders which are created during crushing natural stones to produce crushed aggregates. For concretes with 0~30 wt.% partial replacement fine aggregates with stone powders, experiments of slump, air content, strength and drying shrinkage were carried out. The experiments found that the increase of the amount of stone powders sharply decreased slump and air content. Partially using stone powders instead of fine aggregates was found to increase both compressive and tensile strength slightly. Substituting higher amount of stone powders presented higher drying shrinkage. When HRWRA was added into the concrete with stone powders in order to obtain workability similar to that of plain concrete without stone powders for the same water-cement ratio and unit weight of cement, air content increased with the amount of HRWRA but strength and drying shrinkage were hardly affected by adding HRWRA.

Evaluation of Shrinkage and Creep Behavior of Low-Heat Cement Concrete (저열 시멘트 콘크리트의 건조수축 및 크리프 거동 평가)

  • Mun, Jae-Sung;Yang, Keun-Hyeok;Kim, Si-Jun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.4
    • /
    • pp.305-311
    • /
    • 2016
  • This study examined the long-term inelastic characteristics, including unrestrained shrinkage and creep, of low-heat cement concrete under different ambient curing temperatures. To achieve the designed compressive strength of 42MPa, water-to-binder ratios were selected to be 27.5, 30, and 32.5% for curing temperatures of 5, 20, and $40^{\circ}C$, respectively. Test results showed that the shrinkage strains of concrete mixtures tended to decrease with the decrease in curing temperature because of the delayed evaporation of internal capillary and gel waters. Meanwhile, creep strains were higher in concrete specimens under lower curing temperature due to the occurrence of the transition temperature creep. The design models of KCI provision gave better accuracy in comparison with test results than those of ACI 209, although a correction factor for low-heat cement needs to be established in the KCI provision.

Drying Shrinkage and Durability of Concrete Using Fine River Sand (하천세사를 사용한 콘크리트의 건조수축 및 내구성)

  • Bae, Suho;Jeon, Juntai;Kwon, Soonoh
    • Journal of the Society of Disaster Information
    • /
    • v.9 no.4
    • /
    • pp.493-502
    • /
    • 2013
  • The purpose of this research is to estimate the drying shrinkage and durability of concrete using the fine river sand to utilize it actively as an alternative aggregate for concrete. For this purpose, the fine river sand samples were collected at the mid and down stream of main stream of Nakdong-River, and then the concrete specimens using the fine river sand were made according to strength level. After obtaining relation equation between compressive strength and cement-water ratio from the mix experiment result, the concrete specimens using different fine river sand were made for the specified concrete strength of 35MPa, and then their drying shrinkage and durability such as the resistance to freeze and thaw and carbonation were evaluated. It was observed from the test result that the durability of concrete using fine river sand was similar to that of concrete using reference sand, but the drying shrinkage of concrete using the fine river sand with small fineness was comparatively larger than that of concrete using reference sand.

Strength and Crack Resistance Properties of Fiber Reinforced Concrete Mixed with Recycled PET Fiber (재생 PET 섬유가 혼입된 섬유 보강 콘크리트의 강도 및 균열저항 특성)

  • Kim, Sung-Bae;Kim, Hyun-Young;Yi, Na-Hyun;Kim, Jang-Ho Jay
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.1
    • /
    • pp.102-108
    • /
    • 2010
  • The main objective of this study was to evaluate the effect of recycled PET (RPET) fiber made from waste PET bottles to examine application on concrete member. To evaluate the reinforcement effect of RPET fiber in concrete member, experimental tests were performed, such as mechanical property tests (compressive strength, modulus of elasticity and splitting tensile strength) and drying shrinkage test. In mechanical property tests, compressive strength and modulus of elasticity in concrete mixed with RPET fiber gradually decreased, but splitting tensile strength gradually increased as volume fraction of fiber increased. In drying shrinkage test, free drying shrinkage increased. In restrained case, in contrast, crack occurrence was delayed because of tensile resistance increase by RPET fiber. The comparison of RPET and PP fiber added concrete specimen's properties showed that two materials had similar properties. In conclusion, RPET fiber is an alternative material of PP fiber, even finer for its excellence in eco-friendliness due to the recycling of waste PET bottles and its possible contribution to the pollution declination.

Relation between Autogenous Shrinkage of Concrete and Relative Humidity, Capillary Pressure, Surface Energy in Pore (공극 내 상대습도, 모세관압력, 표면에너지 변화에 따른 콘크리트 자기수축)

  • Lee, Chang-Soo;Park, Jong-Hyok
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.2
    • /
    • pp.131-138
    • /
    • 2008
  • Humidity and strain were estimated for understanding the relation between humidity change by self-desiccation and shrinkage in high-performance concrete with low water binder ratio. Internal humidity change and shrinkage strain were about 10%, 4% and $320\times10^{-6}$, $120\times10^{-6}$ respectively on concrete with water binder ratio 0.3, 0.4 and from the results, humidity change and shrinkage represented the strong linear relation regardless of mixture. For specifying the relation on internal humidity change and autogenous shrinkage strain, shrinkage model was established which is driven by capillary pressure in pore water and surface energy in hydrates on the assumption of a single network and extended meniscus in pore system of concrete. This model and experimental results had a similar tendency so it would be concluded that the internal humidity change by self-desiccation in HPC originated in small pores less than 20 nm, therefore controlling plan on autogenous shrinkage might be focused on surface tension of water and degree of saturation in small pore.

A Study on the Estimation of Loss Rate of Dredged Fills (준설토의 유실률 평가에 관한 연구)

  • Kim, Hong-Taek;Kim, Seog-Yeol;Kang, In-Kyu;Park, Jae-Eock
    • Journal of the Korean GEO-environmental Society
    • /
    • v.1 no.1
    • /
    • pp.57-63
    • /
    • 2000
  • Volume change of the dredged soils is composed of loss amount of the soil particles flowing over an outflow weir with water and settlements due to both the self-weight consolidation in reclaimed layer and the desiccation at the surface of reclaimed layer. In order to estimate the amount of soil particles flowing over an outflow weir with water, the breakage theory and the results of hydrometer analyses. To verify a validity of the proposed procedure, evaluated loss ratio is compared with various estimates from the other existing methods.

  • PDF