• Title/Summary/Keyword: 건설환경부하

Search Result 155, Processing Time 0.025 seconds

Analysis of Environment Emission Characteristics Each Construction Type for Road Field (국도건설공사 도로분야의 공종별 환경부하량 특성분석)

  • Kim, Sang-Ryong;Lee, Dong-Eun;Kim, Byung-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.1
    • /
    • pp.143-151
    • /
    • 2017
  • Recently Korea has presented carbon emission reduce goal of 37% compare to BAU until 2030 according to Paris Agreement in order to correspond to climate change. For this, researchers need to study positively on construction industry that emit $CO_2$ of $3^{rd}$ volume of 28 industry classification. This study calculated environmental load by LCA using the road part except tunnel and bridge among national road cases completed already. After selecting representative type of large construction type based on environmental emission, earth works, drainage works and paving works took up 84%. And this study analyzed the environmental emission feature of each detail construction type after selecting representative type each detail construction type. Utilization of each construction type emission attribute to environmental load during national road construction, will be helpful in making decision of eco-friendly national road construction based on environmental emission.

Anlysis of the Environmental Load Impact Factors for IPC Girder Bridge Using Principal Component Anlysis (주성분 분석을 활용한 IPC 거더교의 환경부하량 영향요인 분석)

  • Kim, Joon-Soo;Jeon, Jin-Gu;Kim, Byung-Soo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.19 no.6
    • /
    • pp.46-54
    • /
    • 2018
  • In the 21st century, the Earth has continued its efforts to reduce carbon emissions to overcome the crisis caused by climate change. The construction industry, which is a representative industry that produces large amounts of the environmental load during construction, should actively reduce the amount of the environmental load. From the planning stage of the construction facility, it is necessary to consider the environmental load such as route selection and structure type selection to reduce the environmental load. However, the environmental load can be estimated based on the input resource amount. However, in the planning stage, it is difficult to accurately calculate the environmental load due to lack of information on the construction amount. The purpose of this study is to select the environmental load factors for IPC girder bridges to be used in the environmental load estimation model in the planning stage. Specific information related to the environmental load was selected from a list of information available in the planning stage, reflecting the Life Cycle Assessment(LCA), correlation, principal components analysis and expert opinion. The list of selected planning stage information is 10 such as span length and bridge extension, and it is expected to be used as a basic data for the future development of environmental load estimation model.

LCA Based Environmental Load Estimation Model for Road Drainage Work Using Available Information in the Initial Design Stage (초기 설계단계의 가용정보를 활용한 도로 배수공종의 LCA기반 환경부하량 산정모델)

  • Park, Jin-Young;Kim, Byung-Soo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.19 no.3
    • /
    • pp.70-78
    • /
    • 2018
  • Due to the increasing concern about climate change, efforts to reduce environmental load are continuously being made in construction industry, and life cycle assessment (LCA) is being presented as an effective method to assess environmental load. Since LCA requires information on construction quantity used for environmental load estimation, however, it is not being utilized in the environmental review at the initial design stage where it is difficult to obtain such information. In this study, a construction quantity computation system based on the standard section was developed for the drainage facilities of the road and utilized in the model to calculate the environmental load. This model can estimate the environmental load by calculating the amount of resources required for LCA using only the information available at the initial design stage. To verify the validity of the model, five validation cases were applied and compared with the unit estimation model and the multiple regression analysis model. As a result, it is confirmed that the mean absolute error rate is 9.94%, which is relatively accurate and effective model in the initial design stage.

The Program Development for Environmental Quality Level and Evaluation of Carbon Dioxide Emission in Construction Works (건설사업의 환경성 및 CO2 배출 평가 프로그램 개발)

  • Lee, Kyoung Hee;Kim, Hyo-Jin;Kwon, Suk-Hyun;Kim, Min-Ji
    • Land and Housing Review
    • /
    • v.3 no.4
    • /
    • pp.399-406
    • /
    • 2012
  • One-third of total energy and 50% of $CO_2$ emissions arise from construction phase. Because of this global amount of energy consumption and $CO_2$ emission, we must do our best to solve this problem. But our existing ways of meeting this problem has focused on the energy consumption saving of the construction and dwelling stage. On the other hand, we has been treated too lightly for handling the $CO_2$ emissions problem during the maintenance management and the demolition process so far,. In this paper, we quantitatively predicted and evaluated the environmental load in each construction step during all life cycle. And, we developed the environmental load assessment program for each construction step. And we proposed the reliable decision support model for objective and reliable environmental load assessment and reduction. This result must help the development of construction technology and low carbon & green growth.

Development of Environmental Load Estimating Model for Maintaining NATM Tunnel (NATM 터널 유지보수를 위한 환경부하 산정모델 개발)

  • Kim, Daae;Kim, Sangtae;Kim, Kyoungsu;Lee, Juhyun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.19 no.6
    • /
    • pp.86-93
    • /
    • 2018
  • Infrastructure which mandatory in human life causes large environmental loads when they are being installed and maintained. Especially, maintenance is performed over a long period of time. Also, there is a limit to suggest a reliable estimated value because environmental loads are changed according to methods of maintenance and periods. In this study, we developed a Environmental Load Estimating Model to evaluate value and plan as soon as possible in the Early Design Phases while maintaining a tunnel. To estimate environmental loads by using brief design information, we analyze a calculation methodology of environmental loads in maintenance phases. Furthermore, we apply periods of maintenance work and maintenance factors considered a characteristic of long-term maintenance. Finally, a main purpose is that this program makes all users estimate environmental loads in maintenance phases easily and quickly. Accordingly, it is considered that the Environmental Load Estimating Model offer assistance to eco-friendly maintenance of the road and tunnel construction.

An Analysis of the Characteristics of Environmental Impact for PSC Beam Bridges using Life Cycle Assessment (LCA 기반 PSC 교량의 환경부하 특성분석에 대한 연구)

  • Cho, Namho;Yun, Won Gun;Lee, Wan Ryul;Kim, Kyong Ju
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.2
    • /
    • pp.297-305
    • /
    • 2016
  • This study aims to analyze characteristics of environmental load for the construction phase of PSC beam bridge based on Life Cycle Assessment. For detail computation of environmental load, the construction materials and energy consumption are derived from the BOQ, also connecting with environmental load by Korea LCI Database Information Network. The characteristic of environmental impact was analyzed by 25 cases and cut-off ratio was 80% to 94%. The result sorted by construction materials revealed that environmental load were 53.3% for ready-mixed concrete, 9.6% for wire rod, 7.8% for rebar, 6.8% for cement, 5.5% for plywood, and 5.2% for energy. Furthermore, the result of environmental impact revealed that 45.5% for global warming, 30.4% for abiotic resources depletion, 10.5% for human toxicity, and 8.9% for photochemical oxidant creation. In the future, we can make a decision considering environmental load based on LCA at design phase.

Application of Artificial Neural Network Model for Environmental Load Estimation of Pre-Stressed Concrete Beam Bridge (PSC Beam교 환경부하량 추정을 위한 인공신경망 모델 적용 연구)

  • Kim, Eu Wang;Yun, Won Gun;Kim, Kyong Ju
    • Korean Journal of Construction Engineering and Management
    • /
    • v.19 no.4
    • /
    • pp.82-92
    • /
    • 2018
  • Considering that earlier stage of construction project has a great influence on the possibility of lowering of environmental load, it is important to build and utilize system that can support effective decision making at the initial stage of the project. In this study, we constructed an environmental load estimation model that can be used at the early stage of the project using basic design factors. The model was constructed by using the artificial neural network to estimate environmental load by applying to planning stage (ANN-1), basic design stage (ANN-2). The result of test, shows that average of absolute measuring efficiency and standard deviation of ANN-1 and ANN-2 were 11.19% / 5.30% and 9.59% / 3.09% each. This result indicates that the model using the input variables extended with the project progress has high reliability and it is considered to be effective in decision support at the initial design stage of the project.

Pollutant Budget Change Due to Construction of Wastewater Treatment Plant in Masan Bay (하수처리장 건설에 의한 마산만의 오염물질 수지변화)

  • 조홍연;채장원;정신택
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.12 no.3
    • /
    • pp.149-155
    • /
    • 2000
  • The effects of the WfP construction are analysed quantitatively based on the pollutant budget change in Masan Bay. The reduction effects of the watershed pollutant loads are clearly shown, while the positive influence of the water quality (WQ) are not substantial because the pollutant load also increased continusly after WTP construction. The reduction effects of the COD, 55, TN and TP parameters are 17.6%, 68.9%,66.7%, and 38%, respectively in Masan Bay (zone I). The environmental condition of the northern part of Chinhae Bay (zone ll), however, is slowly degraded because of the direct and indirect effects - effluents discharge from the WTP and pollutants release from the sediment, respectively.

  • PDF

A Study on the Characteristics of Environmental Impact in Construction Sector of High-Speed Railway using LCA (LCA를 이용한 고속철도 건설단계에서의 환경부하 특성에 관한 연구)

  • Lee, Cheol;Lee, Jae-Young;Jung, Woo-Sung;Hwang, Young-Woo
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.3
    • /
    • pp.178-185
    • /
    • 2014
  • This study investigates the characteristics of environmental impact from the construction phase of a high-speed railway through a Life Cycle Assessment method based on the materials used and the energy consumption of the equipment used according to the design statement. The results reveal that the contributions to environmental impact in the construction sector of a high-speed railway were 89% for civil engineering, 7% for the track system, 2% for stations and 2% for the energy and telecommunication system. In particular, the highest contribution to the impact in the civil engineering category were 54% for Global Warming, 25% for Abiotic Resource Depletion and 8% for Photochemical Oxidant Creation. The main influence factors were the use of remicon and cement. In future, the application of Life Cycle Assessment for the construction sector of railway construction will introduce efficient reduction methods according to the quantitative calculation of environmental impact.