• Title/Summary/Keyword: 건설기술정보

Search Result 1,484, Processing Time 0.026 seconds

Crack detection in concrete using deep learning for underground facility safety inspection (지하시설물 안전점검을 위한 딥러닝 기반 콘크리트 균열 검출)

  • Eui-Ik Jeon;Impyeong Lee;Donggyou Kim
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.6
    • /
    • pp.555-567
    • /
    • 2023
  • The cracks in the tunnel are currently determined through visual inspections conducted by inspectors based on images acquired using tunnel imaging acquisition systems. This labor-intensive approach, relying on inspectors, has inherent limitations as it is subject to their subjective judgments. Recently research efforts have actively explored the use of deep learning to automatically detect tunnel cracks. However, most studies utilize public datasets or lack sufficient objectivity in the analysis process, making it challenging to apply them effectively in practical operations. In this study, we selected test datasets consisting of images in the same format as those obtained from the actual inspection system to perform an objective evaluation of deep learning models. Additionally, we introduced ensemble techniques to complement the strengths and weaknesses of the deep learning models, thereby improving the accuracy of crack detection. As a result, we achieved high recall rates of 80%, 88%, and 89% for cracks with sizes of 0.2 mm, 0.3 mm, and 0.5 mm, respectively, in the test images. In addition, the crack detection result of deep learning included numerous cracks that the inspector could not find. if cracks are detected with sufficient accuracy in a more objective evaluation by selecting images from other tunnels that were not used in this study, it is judged that deep learning will be able to be introduced to facility safety inspection.

A Development of Flood Mapping Accelerator Based on HEC-softwares (HEC 소프트웨어 기반 홍수범람지도 엑셀러레이터 개발)

  • Kim, JongChun;Hwang, Seokhwan;Jeong, Jongho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.173-182
    • /
    • 2024
  • In recent, there has been a trend toward primarily utilizing data-driven models employing artificial intelligence technologies, such as machine learning, for flood prediction. These data-driven models offer the advantage of utilizing pre-training results, significantly reducing the required simulation time. However, it remains that a considerable amount of flood data is necessary for the pre-training in data-driven models, while the available observed data for application is often insufficient. As an alternative, validated simulation results from physically-based models are being employed as pre-training data alongside observed data. In this context, we developed a flood mapping accelerator to generate flood maps for pre-training. The proposed accelerator automates the entire process of flood mapping, i.e., estimating flood discharge using HEC-1, calculating water surface levels using HEC-RAS, simulating channel overflow and generating flood maps using RAS Mapper. With the accelerator, users can easily prepare a database for pre-training of data-driven models from hundreds to tens of thousands of rainfall scenarios. It includes various convenient menus containing a Graphic User Interface(GUI), and its practical applicability has been validated across 26 test-beds.

철도기준점을 이용한 철도중심선형 좌표변환에 관한연구 - 호남고속철도 계획노선을 중심으로 -

  • Moon, Cheung-Kyun;Heo, Joon;Kang, Sang-Du;Kim, Sang-Hoon
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1141-1151
    • /
    • 2007
  • In this paper through Honam high-speed railroad which is planned with the north and south axis, we will verify the feasibility of the coordinate conversion using railroad control points after regarding current planned-railroad as the linear central axises. From analysis, distortion of Y axis varies 21cm to 40cm diminishing to a gentle straight line, distortion of X axis varies 14cm to 29cm. Through a revision, the deviation value between the coordinates were 6mm to 9mm and it satisfied the allowable error of national geographic information institute which is following ITRF (International Terrestrial Reference Frame) and cadastral boundary survey(10cm). consequently the coordinate conversion is possible using railroad control points as common control points.

  • PDF

Analysis of Co-registration Performance According to Geometric Processing Level of KOMPSAT-3/3A Reference Image (KOMPSAT-3/3A 기준영상의 기하품질에 따른 상호좌표등록 결과 분석)

  • Yun, Yerin;Kim, Taeheon;Oh, Jaehong;Han, Youkyung
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.2
    • /
    • pp.221-232
    • /
    • 2021
  • This study analyzed co-registration results according to the geometric processing level of reference image, which are Level 1R and Level 1G provided from KOMPSAT-3 and KOMPSAT-3A images. We performed co-registration using each Level 1R and Level 1G image as a reference image, and Level 1R image as a sensed image. For constructing the experimental dataset, seven Level 1R and 1G images of KOMPSAT-3 and KOMPSAT-3A acquired from Daejeon, South Korea, were used. To coarsely align the geometric position of the two images, SURF (Speeded-Up Robust Feature) and PC (Phase Correlation) methods were combined and then repeatedly applied to the overlapping region of the images. Then, we extracted tie-points using the SURF method from coarsely aligned images and performed fine co-registration through affine transformation and piecewise Linear transformation, respectively, constructed with the tie-points. As a result of the experiment, when Level 1G image was used as a reference image, a relatively large number of tie-points were extracted than Level 1R image. Also, in the case where the reference image is Level 1G image, the root mean square error of co-registration was 5 pixels less than the case of Level 1R image on average. We have shown from the experimental results that the co-registration performance can be affected by the geometric processing level related to the initial geometric relationship between the two images. Moreover, we confirmed that the better geometric quality of the reference image achieved the more stable co-registration performance.

Behavior Analysis of Concrete Structure under Blast Loading : (I) Experiment Procedures (폭발하중을 받는 콘크리트 구조물의 실험적 거동분석 : (I) 실험수행절차)

  • Yi, Na Hyun;Kim, Sung Bae;Kim, Jang-Ho Jay;Choi, Jong Kwon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5A
    • /
    • pp.557-564
    • /
    • 2009
  • In recent years, there have been numerous explosion-related accidents due to military and terrorist activities. Such incidents caused not only damages to structures but also human casualties, especially in urban areas. To protect structures and save human lives against explosion accidents, better understanding of the explosion effect on structures is needed. In an explosion, the blast overpressure is applied to concrete structures as an impulsive load of extremely short duration with very high pressure and heat. Generally, concrete is known to have a relatively high blast resistance compared to other construction materials. However, information and test results related to the blast experiment of internal and external have been limited due to military and national security reasons. Therefore, in this paper, to evaluate blast effect on reinforced have concrete structure and its protective performance, blast tests are carried out with $1.0m{\times}1.0m{\times}150mm$ reinforce concrete slab structure at the Agency for Defence Development. The standoff blast distance is 1.5 m and the preliminary tests consists with TNT 9 lbs and TNT 35 lbs and the main tests used ANFO 35 lbs. It is the first ever blast experiment for nonmilitary purposes domestically. In this paper, based on the basic experiment procedure and measurement details for acquiring structural behavior data, the blast experimental measurement system and procedure are established details. The procedure of blast experiments are based on the established measurement system which consists of sensor, signal conditioner, DAQ system, software. It can be used as basic research references for related research areas, which include protective design and effective behavior measurements of structure under blast loading.

Debris flow characteristics and sabo dam function in urban steep slopes (도심지 급경사지에서 토석류 범람 특성 및 사방댐 기능)

  • Kim, Yeonjoong;Kim, Taewoo;Kim, Dongkyum;Yoon, Jongsung
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.8
    • /
    • pp.627-636
    • /
    • 2020
  • Debris flow disasters primarily occur in mountainous terrains far from cities. As such, they have been underestimated to cause relatively less damage compared with other natural disasters. However, owing to urbanization, several residential areas and major facilities have been built in mountainous regions, and the frequency of debris flow disasters is steadily increasing owing to the increase in rainfall with environmental and climate changes. Thus, the risk of debris flow is on the rise. However, only a few studies have explored the characteristics of flooding and reduction measures for debris flow in areas designated as steep slopes. In this regard, it is necessary to conduct research on securing independent disaster prevention technology, suitable for the environment in South Korea and reflective of the topographical characteristics thereof, and update and improve disaster prevention information. Accordingly, this study aimed to calculate the amount of debris flow, depending on disaster prevention performance targets for regions designated as steep slopes in South Korea, and develop an independent model to not only evaluate the impact of debris flow but also identify debris barriers that are optimal for mitigating damage. To validate the reliability of the two-dimensional debris flow model developed for the evaluation of debris barriers, the model's performance was compared with that of the hydraulic model. Furthermore, a 2-D debris model was constructed in consideration of the regional characteristics around the steep slopes to analyze the flow characteristics of the debris that directly reaches the damaged area. The flow characteristics of the debris delivered downstream were further analyzed, depending on the specifications (height) and installation locations of the debris barriers employed to reduce the damage. The experimental results showed that the reliability of the developed model is satisfactory; further, this study confirmed significant performance degradation of debris barriers in areas where the barriers were installed at a slope of 20° or more, which is the slope at which debris flows occur.

Myanmar's Macroeconomic changes and its Implications for the Invest of Korean Enterprises (미얀마 통상환경의 변화와 한국기업의 투자 및 진출에 관한 시사점)

  • Jung, Sung-Hoon;Kwon, O-Yoon
    • International Commerce and Information Review
    • /
    • v.13 no.4
    • /
    • pp.177-201
    • /
    • 2011
  • Myanmar had fallen behind other southeast asian nations since Burmese way to Socialism settled down. However, historically second election in Myanmar hold in 2011 and dramatic changes in areas such as Special Economic Zone announcement, the very huge inflows of foreign direct investment in a year of 2009, the infrastructure building projects, a permit of the right to strike for Labour Organization in Myanmar etc. Particularly, Foreign investments and trade with neighbouring countries are actively growing and also with Korea. But investments of Korea in Myanmar relatively are not diversity, with limited sectors such as mining and sewing manufacturing. In this point of view, this paper is trying to make implications for strategies of entry and investments of Korea in Myanmar by using previous papers related to Myanmar economies, trade and foreign investments with updated statistical data. The implications for Korea is that recently Myanmar economy is in its early stages of development. Although it can occur huge demand of railway, road, communications and constructions related to social infrastructures essentially needed for development of a country, these sectors relatively need huge investments. On the other hands, textile and sewing industry relatively need smaller investments in which investors can utilize low labour cost and a position for export to third countries. But those firms which set up for those purpose in Myanmar might have trouble creating domestic markets in future. Moreover, due to demand which occur in the early stage of growth in Myanmar, trade volume tend to increase and trading is also possible to invest but Myanmar still have lots of problems with infrastructure such as road and logistics and we need to make pre-survey for the costs and benefits of our products Finally, Myanmar government is trying to promote and encourage some of industries such as export-oriented industry, import substitution industry and labour-intensive industry. It can also means they will accumulate capital which can be sources for Myanmar economic growth.

  • PDF

A Study on the Level of Citizen Participation in Smart City Project (스마트도시사업 단계별 시민참여 수준 진단에 관한 연구)

  • PARK, Ji-Ho;PARK, Joung-Woo;NAM, Kwang-Woo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.2
    • /
    • pp.12-28
    • /
    • 2021
  • Based on the global smart city promotion trend, in 2018, the "Fourth Industrial Revolution Committee" selected "sustainability" and "people-centered" as keywords in relation to the direction of domestic smart city policy. Accordingly, the Living Lab program, which is an active citizen-centered innovation methodology, is applied to each stage of the domestic smart city construction project. Through the Living Lab program, and in collaboration with the public and experts, the smart city discovers local issues as it focuses on citizens, devises solutions to sustainable urban problems, and formulates a regional development plan that reflects the needs of citizens. However, compared to citizen participation in urban regeneration projects that have been operated for a relatively long time, participation in smart city projects was found to significantly differ in level and sustainability. Therefore, this study conducted a comparative analysis of the characteristics of citizen participation at each stage of an urban regeneration project and, based on Arnstein's "Participation Ladder" model, examined the level of citizen participation activities in the Living Lab program carried out in a smart city commercial area from 2018 to 2019. The results indicated that citizen participation activities in the Living Lab conducted in the smart city project had a great influence on selecting smart city services, which fit the needs of local residents, and on determining the technological level of services appropriate to the region based on a relatively high level of authority, such as selection of smart city services or composition of solutions. However, most of the citizen participation activities were halted after the project's completion due to the one-off recruitment of citizen participation groups for the smart city construction project only. On the other hand, citizens' participation activities in the field of urban regeneration were focused on local communities, and continuous operation and management measures were being drawn from the project planning stage to the operation stage after the project was completed. This study presented a plan to revitalize citizen participation for the realization of a more sustainable smart city through a comparison of the characteristics and an examination of the level of citizen participation in such urban regeneration and smart city projects.

Laying the Siting of High-Level Radioactive Waste in Public Opinion (고준위 방폐장 입지 선정의 공론화 기초 연구)

  • Lee, Soo-Jang
    • Journal of Environmental Policy
    • /
    • v.7 no.4
    • /
    • pp.105-134
    • /
    • 2008
  • Local opposition and protest constitute single greatest hurdle to the siting of locally unwanted land uses(LULUs), especially siting of high-level radioactive disposal not only throughout Korea but also throughout the industrialized world. It can be attributed mainly to the NIMBYism, equity problem, and lack of participation. These problems are arisen from rational planning process which emphasizes instrumental rationality. But planning is a value-laden political activity, in which substantive rationality is central. To achieve this goals, we need a sound planning process for siting LULUs, which should improve the ability of citizens to influence the decisions that affects them. By a sound planning process, we mean one that is open to citizen input and contains accurate and complete information. In other word, the public is also part of the goal setting process and, as the information and analyses developed by the planners are evaluated by the public, strategies for solutions can be developed through consensus-building. This method is called as a co-operative siting process, and must be structured in order to arrive at publicly acceptable decisions. The followings are decided by consensus-building method. 1. Negotiation will be held? 2. What is the benefits and risks of negotiation? 3. What are solutions when collisions between national interests and local ones come into? 4. What are the agendas? 5. What is the community' role in site selection? 6. Are there incentives to negotiation. 7. Who are the parties to the negotiation? 8. Who will represent the community? 9. What groundwork of negotiation is set up? 10. How do we assure that the community access to information and expert? 11. What happens if negotiation is failed? 12. Is it necessary to trust each other in negotiations? 13. Is a mediator needed in negotiations?

  • PDF

Estimation of spatial distribution of snow depth using DInSAR of Sentinel-1 SAR satellite images (Sentinel-1 SAR 위성영상의 위상차분간섭기법(DInSAR)을 이용한 적설심의 공간분포 추정)

  • Park, Heeseong;Chung, Gunhui
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.12
    • /
    • pp.1125-1135
    • /
    • 2022
  • Damages by heavy snow does not occur very often, but when it does, it causes damage to a wide area. To mitigate snow damage, it is necessary to know, in advance, the depth of snow that causes damage in each region. However, snow depths are measured at observatory locations, and it is difficult to understand the spatial distribution of snow depth that causes damage in a region. To understand the spatial distribution of snow depth, the point measurements are interpolated. However, estimating spatial distribution of snow depth is not easy when the number of measured snow depth is small and topographical characteristics such as altitude are not similar. To overcome this limit, satellite images such as Synthetic Aperture Radar (SAR) can be analyzed using Differential Interferometric SAR (DInSAR) method. DInSAR uses two different SAR images measured at two different times, and is generally used to track minor changes in topography. In this study, the spatial distribution of snow depth was estimated by DInSAR analysis using dual polarimetric IW mode C-band SAR data of Sentinel-1B satellite operated by the European Space Agency (ESA). In addition, snow depth was estimated using geostationary satellite Chollian-2 (GK-2A) to compare with the snow depth from DInSAR method. As a result, the accuracy of snow cover estimation in terms with grids was about 0.92% for DInSAR and about 0.71% for GK-2A, indicating high applicability of DInSAR method. Although there were cases of overestimation of the snow depth, sufficient information was provided for estimating the spatial distribution of the snow depth. And this will be helpful in understanding regional damage-causing snow depth.