• Title/Summary/Keyword: 건물 에너지 영향인자

Search Result 10, Processing Time 0.021 seconds

Investigation of Institutional Improvement through Evaluation of Zero-Energy Buildings (제로에너지 빌딩 평가를 통한 제도적 개선방안에 대한 조사 연구)

  • Chae, Sookwon;Kim, Juhwan;Chae, Hyunbyung
    • Journal of Energy Engineering
    • /
    • v.25 no.3
    • /
    • pp.83-94
    • /
    • 2016
  • Energy use has been recognized worldwide as a main cause of global warming and it is at the center of climate change. In this study, problems and measures of zero-energy building construction are investigated and analyzed. Based on the results, evaluation criteria of the zero-energy building are suggested. Performance related factors(Q) representing the environmental grade were divided into three categories as outdoor, indoor environment and maintenance. Energy related factors(LR) representing the energy load were divided into an energy, materials & resources, water cycle management, land use and transportation. Detailed fifty three items are listed for the evaluation under the consideration of energy, water cycle management sections gave weight. Upon receiving the first in the environment friendly certification system, Seoul Central Post Office and Seoul Metropolitan Water Supply Center evaluated. The reason why this score difference is due to lack of use of new generation energy building construction is required expensive costs so need expansion of governmental support. This effort is successful zero energy building construction and copes with global warming and climate change.

A Study of the Possibility of Building Energy Saving through the Building Data : A Case Study of Macro to Micro Building Energy Analysis (건물데이터를 통한 건물에너지 절감 가능성에 대한 연구 : 도시단위의 거시적 분석부터 미시적 건물에너지 분석사례)

  • Cho, Soo Youn;Leigh, Seung-Bok
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.11
    • /
    • pp.580-591
    • /
    • 2017
  • In accordance with 2015 Paris agreement, each individual country around the world should voluntarily propose not only its (individual) reduction target, but also actively develop and present expansion targets of its scope and concrete reduction goals exceeding the previous ones. Accordingly, it is necessary to prepare a macroscopic, long-range strategy for reducing energy consumption and greenhouse gas emissions, which can cover a single building, town, city and eventually even a province. The purpose of this research is to gather and compile government-acquired data from various sources and (in accordance with contents and specificity), combine building data by stages by using multi-variable matrix and then analyze the significance of combined data for each stage. The first order data presents the probability and the cost effectiveness of energy saving on the scale of a city or a province, based only upon general information, size and power consumption of buildings. The second order data can identify a pattern of energy consumption for a building of a specific purpose and which tends to consume a larger amount of energy during one particular season (than others). Finally, the third order data can derive influential factors (base load, humidity) from the energy consumption pattern of a building, and thus propose an informed and practical energy-saving method to be applied in real time.

An evaluation of ventilation characteristics of dwelling unit by ventilation network (환기회로망을 이용한 주호의 환기특성 평가)

  • Kim, Sin-Do;Kang, Young;Lee, Ju-Sang
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 1999.10a
    • /
    • pp.81-82
    • /
    • 1999
  • 풍압력 외의 외부에너지가 필요치 않아 에너지를 절약할 수 있고, 외기를 도입하여 실내를 쾌적하게 유지할 수 있다는 장점으로 인해 자연환기에 대한 관심이 높아지고 있다. 자연환기에 영향을 미치는 인자는 건물의 특성, 외기의 특성 등으로 매우 다양하며, 독립적으로 작용하지 않고 상호연관적으로 작용한다.(중략)

  • PDF

Methodology and Guidelines for Selecting Measurement Boundaries and Influence Variables for Analyzing and Evaluating Energy Usage in Demonstration ESS-Based Distribution and Logistics Facilities (실증 ESS 기반 유통 물류시설의 에너지 사용량 분석 및 평가를 위한 측정경계와 영향변수 선정 방법론 및 가이드라인)

  • Jung, Kicheol;Kwon, Dongmyung;Choi, Okhwan;Go, Myungchan
    • Journal of Energy Engineering
    • /
    • v.29 no.2
    • /
    • pp.61-67
    • /
    • 2020
  • ESS-based buildings are being widely studied as an effective methods for saving energy with ZEB, BEMS, and FEMS. However, in large scale buildings, there are many energy-consuming facilities, so it is necessary to identify important energy-consuming facilities to build a real-time measurement system. In addition, there are a myriad of factors that affect the dependent variable of energy use, therefore there is a limitation that effective energy management is difficult. Therefore, this study applied the measurement boundary setting methodology according to the energy supply status through due diligence for the demonstration ESS distribution logistics facility, and suggested the methodolgy for presenting priority for the construction of the measurement system. Afterwards, the impact variables that Acting as an independent variable affecting the energy consumption of the distribution and logistics facilities were categorized into intrinsic and meteorological variables. Lastly, all factors that could affect the energy consumption of the actual distribution and logistics facilities, were classified and presented as guidelines list. By applying the results of this study, it is possible to build a monitoring system at a low cost and high efficiency in a distribution and logistics facility with a complex structure. And by identifying the main independent variables for the measured energy consumption, effectively identifying trends in energy consumption and deriving saving points It is expected to be able to operate the ESS-based infrastructure.

Preliminary Analysis of the Thermal-Hydraulic Performance of a Passive Containment Cooling System using the MARS-KS1.3 Code (MARS-KS1.3을 이용한 피동원자로건물냉각계통 열수력 성능 예비분석)

  • Bae, Sung Hwan;Ha, Tae Wook;Jeong, Jae Jun;Yun, Byong Jo;Jerng, Dong Wook;Kim, Han Gon
    • Journal of Energy Engineering
    • /
    • v.24 no.3
    • /
    • pp.96-108
    • /
    • 2015
  • A passive containment cooling system has been designed to remove the heat inside a containment during accidents without external power supply. In this work, the PCCS was introduced in the APR1400 plant to replace the containment spray system and, then, the thermal-hydraulic performance of the PCCS was analyzed using the system thermal-hydraulic computer code, MARS. A double-ended cold-leg break accident, which is known to induce the maximum pressure in the containment, is simulated, where the thermal hydraulics of the PCCS, the reactor coolant system, and the containment are simultaneously simulated. The results of the calculations showed that the PCCS can replace the existing spray system and that the containment building and its internal structure also play a very important role for the heat removal during the accident. Some sensitivity calculations were carried out to evaluate the model uncertainty and the effects of design parameters. The limitations of the PCCS are also discussed.

Effects of Various Factors on the Energy Consumption of Korean-Style Apartment Houses (한국형 아파트의 냉난방 에너지에 미치는 제 인자의 영향)

  • 유호선;현석균;홍희기
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.11
    • /
    • pp.972-980
    • /
    • 2002
  • This work is aimed at estimating the effects of various factors on the energy consumption of Korean-style apartment houses using TRNSYS. The factors considered here include the nominal size of floor area, type of remodeling, azimuth, sidewall insulation, and window type. Based on some assumptions, an actual apartment house is simplified into a model that is used for thermal load calculations. The simplified model is validated by showing a good agreement with the actual one in the predicted result. Remodeling balconies into unconditioned buffer spaces yields a favorable thermal performance in comparison with the original type regardless of the nominal size. Incorporating balconies into a conditioned indoor space leads to sharp increases in thermal loads, which must be avoided in view of energy conservation as well as structural problem. A quantitative assessment on the azimuthal effect indicates that the heating energy can be saved up to 16% by taking the south or southeast direction. Reduction in the heating load with enhancing the sidewall insulation is gradual, so that a cost-effectiveness analysis may be needed when amending the regulations concerned. Glazing appears to significantly affect the heat transfer through window. A typical case illustrates that the heating load is decreased about 25% by simply adopting triple glazing instead of double glazing.

Spatial Analysis of the Urban Heat Island Using a 3-D City Model (3차원 도시모형을 이용한 도시열섬의 공간분석)

  • Chun, Bum-Seok;Guldmann, Jean-Michel
    • Spatial Information Research
    • /
    • v.20 no.4
    • /
    • pp.1-16
    • /
    • 2012
  • There is no doubt that the urban heat island (UHI) is a mounting problem in built-up environments, due to energy retention by the surface materials of dense buildings, leading to increased temperatures, air pollution, and energy consumption. To investigate the UHI, three-dimensional (3-D) information is necessary to analyze complex sites, including dense building clusters. In this research, 3-D building geometry information is combined with two-dimensional (2-D) urban surface information to examine the relationship between urban characteristics and temperature. In addition, this research introduces spatial regression models to account for the spatial spillover effects of urban temperatures, and includes the following steps: (a) estimating urban temperatures, (b) developing a 3-D city model, (c) generating urban parameters, and (d) conducting statistical analyses using both Ordinary Least-Squares (OLS) and Spatial Regression Models. The results demonstrate that 3-D urban characteristics greatly affect temperatures and that neighborhood effects are critical in explaining temperature variations. Finally, the implications of the results are discussed, providing guidelines for policies to reduce the UHI.

Effects on Resident of human body at fire outbreak for apartment building using CFAST (화재 시뮬레이션을 이용한 공동주택 화재발생시 거주자의 인체에 미치는 영향)

  • Park, Joo-Won;Kwon, Jin-Suk;Choi, Jae-Hyouk
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.189-189
    • /
    • 2011
  • 최근 공동주택은 보편적인 도시주거 유형으로 자리매김 하고 있지만, 성장 위주의 경제 산업 정책에 따른 안전의식미약, 사회구조개편에 따른 급격한 증가, 생활환경 변화와 에너지 사용 증가 등 화재 유발인자의 다양화로 인해 인적 물적 피해가 증가하고 있는 실정이다. 특히 다른 건물들과는 달리 공동주택의 거주자가 유아, 노인, 신체장애자 등 다양한 인적 구성의 형태로 이루어져 있어서 화재 발생 건수에 비해 인명피해가 월등히 높은 편이다. 공동주택에서의 화재에 대한 위험성을 인식하고, 그에 대한 인적 물적 피해를 최소화하기 위한 대책 마련이 시급하다. 본 논문은 CFAST(Consolidated Model of Fire Growth and Smoke Transport)를 사용하여 공동주택을 대상으로 실물 화재 실험을 실시하고 공간화재에서의 화재 성상을 파악하여 화재 시 개구부의 개폐 여부에 따라 발생되는 산소와 이산화탄소의 농도와 온도가 인체에 미치는 영향에 대해 알아본다. 개구부를 개방 했을 경우에 외부창문의 개폐 여부에 상관없이 모든 방의 온도 분포가 뚜렷하게 나타났지만 개구부를 폐쇄 할 경우에는 발화지점인 거실의 온도 분포만 나타났다. Flashover현상과 Back Draft현상은 개구부의 개폐여부에 상관없이 외부 창문을 폐쇄 했을 경우에 나타났지만 특히 모든 개구부와 외부창문을 폐쇄 했을 경우에 더욱 뚜렷하게 나타났다. 각 실은 점화 후 4분경에 최고 온도를 보였으며 다른 방에 비해 발화지점인 거실의 온도가 가장 높게 나타났다. 온도에 의해서는 두 가지 영향이 일어날 수 있는데, 하나는 비교적 장시간에 걸쳐 발생하는 열응력이고, 다른 하나는 짧은 시간에 발생할 수 있는 화상이다. 만약 피부온도가 $45^{\circ}C$에 이르면 인체는 고통을 느끼게 되며, 이보다 더 높은 온도에서는 깊은 피부조직까지 손상을 줄 수 있다. 움직이지 않는 사람에 대한 고통 유발 임계온도는 약 $200^{\circ}C$이며, 인체는 땀의 발산으로 온도에 대한 내성이 증가하지만 이체가 장시간 열을 받으면 사망에 이를 수 있다. 결론적으로 공동 주택을 대상으로 CFAST를 이용해 분석한 결과 플래쉬오버 현상으로 인해 화재가 성장하여 급격히 온도가 상승하다가, 산소 부족으로 인해 화재가 성장하지 않고 온도가 떨어지는 것을 알 수 있다. 화재 시 온도, 산소, 이산화탄소를 고려하였을 때 약 3분 이내에 대피해야 온도 및 가스로 인한 피해를 줄일 수 있을 것으로 판단된다.

  • PDF

A Study on the Worst Stress Condition Test Evaluation of Blowers for Small Stationary Fuel Cell System (소용량 건물용 연료전지시스템 블로워의 가혹조건 평가에 관한 연구)

  • Kim, Kangsoo;Lee, Deokkwon;Lee, Jungwoon;Kim, Eunjung;Kim, Inchan;Kim, Younggyu;Shin, Hunyong
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.6
    • /
    • pp.34-40
    • /
    • 2012
  • The fuel cell is one of the renewable energy sources. And it is a new source of energy that can be applied to various fuels and continuously supported by the excellent city-gas infrastructure. It is important to improve performances and reliabilities, and reduce the cost of fuel cell systems for commercialization. And, some safety performances of blower domestically produced are evaluated and some improvements are researched to save the cost of fuel cell systems. In this paper, the performance and worst stress condition of blowers are evaluated in operating environment similar to the fuel cell systems. Actually, the correlation of flow, leakage and thermal behavior are evaluated in the worst stress condition at $70^{\circ}C$ and, some major factors of blower degradation such as a motor deterioration, material and structures of the outlet are examined.

Seasonal Variation of CO2 Exchange During the Barley Growing Season at a Rice-barley Double Cropping Paddy Field in Gimje, Korea (김제 벼-보리 이모작 논에서 보리재배 기간의 CO2 교환량의 계절적 변화)

  • Min, Sung-Hyun;Shim, Kyo-Moon;Kim, Yong-Seok;Hwang, Hae;Jung, Myung-Pyo;Choi, In-Tae
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.2
    • /
    • pp.137-145
    • /
    • 2014
  • Rice-barley double cropping system is typical in southwestern part of South Korea. However, the information of carbon dioxide ($CO_2$) exchange for barley growing season has still limited in comparison with rice. Using the eddy covariance (EC) technique, seasonal variation of $CO_2$ exchange was analyzed for the barley growing season at a rice-barley double cropping field in Gimje, Korea. The effects of environmental factors and biomass on the $CO_2$ flux also were investigated. Quality control and gap-filling of flux data were conducted before this analysis and investigation. The results indicated that $CO_2$ uptake increased rapidly at tillering stage and maximum net ecosystem exchange of $CO_2$ (NEE) occurred at the early of May, 2012 ($-11.2gCm^{-2}d^{-1}$), when the heading of barley occurred. NEE, gross primary production (GPP), and ecosystem respiration (Re) during the barley growing season were -348.0, 663.3, and $315.2gCm^{-2}$, respectively. In this study, an attempt has been made to measure NEE, GPP, and Re with the help of the EC system for the barley growing season for the first time in Korea, focusing on $CO_2$ exchange between the biosphere and the atmosphere.