DOI QR코드

DOI QR Code

Preliminary Analysis of the Thermal-Hydraulic Performance of a Passive Containment Cooling System using the MARS-KS1.3 Code

MARS-KS1.3을 이용한 피동원자로건물냉각계통 열수력 성능 예비분석

  • Bae, Sung Hwan (School of Mechanical Engineering, Pusan National University) ;
  • Ha, Tae Wook (School of Mechanical Engineering, Pusan National University) ;
  • Jeong, Jae Jun (School of Mechanical Engineering, Pusan National University) ;
  • Yun, Byong Jo (School of Mechanical Engineering, Pusan National University) ;
  • Jerng, Dong Wook (School of Energy System, Chung-Ang University) ;
  • Kim, Han Gon (Central Research Institute, Korea Hydro and Nuclear Power Co.)
  • 배성환 (부산대학교 기계공학부) ;
  • 하태욱 (부산대학교 기계공학부) ;
  • 정재준 (부산대학교 기계공학부) ;
  • 윤병조 (부산대학교 기계공학부) ;
  • 정동욱 (중앙대학교 에너지시스템공학부) ;
  • 김한곤 (한국수력원자력 중앙연구원)
  • Received : 2015.06.16
  • Accepted : 2015.09.18
  • Published : 2015.09.30

Abstract

A passive containment cooling system has been designed to remove the heat inside a containment during accidents without external power supply. In this work, the PCCS was introduced in the APR1400 plant to replace the containment spray system and, then, the thermal-hydraulic performance of the PCCS was analyzed using the system thermal-hydraulic computer code, MARS. A double-ended cold-leg break accident, which is known to induce the maximum pressure in the containment, is simulated, where the thermal hydraulics of the PCCS, the reactor coolant system, and the containment are simultaneously simulated. The results of the calculations showed that the PCCS can replace the existing spray system and that the containment building and its internal structure also play a very important role for the heat removal during the accident. Some sensitivity calculations were carried out to evaluate the model uncertainty and the effects of design parameters. The limitations of the PCCS are also discussed.

피동원자로건물냉각계통(Passive Containment Cooling System; PCCS)은 전원 공급 없이도 원자로건물 내부의 열을 제거하여 그 건전성을 유지시키기 위한 안전설비이다. 본 연구에서는 현재 연구중인 PCCS를 1400 MWe 가압경수형 원전(APR1400)에 설치하는 경우 PCCS 성능을 분석하였다. 분석도구로 계통열수력분석코드 MARS-KS1.3을 사용하였다. PCCS의 성능분석을 위해 APR 1400 표준안전성분석 보고서를 참고하여 원자로건물 내부의 최대압력을 유발하는 사고 시나리오인 저온관 양단 파단사고를 모의하였다. 이 계산에서는 PCCS, 원자로냉각계통 및 원자로건물의 열수력을 동시에 모의하였다. 계산결과를 통해 기존의 원자로건물 살수계통을 대체하여 PCCS가 원자로건물의 건전성을 유지시킬 수 있음을 확인하였다. 또한 PCCS의 성능에 영향을 줄 수 있는 여러 인자를 변경해가며 민감도 분석을 수행하였고 PCCS의 문제점도 확인하였다.

Keywords

References

  1. 한국과학기술원 원자력 및 양자공학과, "일본 후쿠 시마 원전 사고: 경과와 영향 그리고 교훈", 2001.
  2. S.W. Lee, W.P. Baek, S.H Chang, "Assessment of Passive Containment Cooling Concepts for Advanced Pressurized Water Reactors", Ann. Nucl. Energy, 1997, Vol. 2, No. 6, pp. 467-475. https://doi.org/10.1016/0306-4549(75)90097-3
  3. C.S. Byun, D.W. Jerng, N.E. Todreas, "Conceptual Design and Analysis of a Semi-passive Containment Cooling System for a Large Concrete Containment", Nuclear Engineering and Design, 2000, Vol. 199, pp. 227-242. https://doi.org/10.1016/S0029-5493(00)00228-4
  4. P.E. Juhn, J. Kupitz, J. Cleveland, "IAEA Activities on Passive Safety Systems and Overview of International Development", Nuclear Engineering and Design, 2000, Vol. 201, pp. 41-59. https://doi.org/10.1016/S0029-5493(00)00260-0
  5. M.H. Anderson. L.E. Herranz, M.L. Corradini, "Experimental Analysis of Heat Transfer within the AP600 Containment under Postulated Accident Conditions", Nuclear Engineering and Design, 1998, Vol. 185, pp. 153-172. https://doi.org/10.1016/S0029-5493(98)00232-5
  6. T.L. Schulz, "Westinghouse AP1000 Advanced Passive Plant", Nuclear Engineering and Design, 2006, Vol. 236, pp. 1547-1557. https://doi.org/10.1016/j.nucengdes.2006.03.049
  7. W.E. Cummins, M.M. Corletti, T.L. Schulz, "Westinghouse AP1000 Advanced Passive Plant", Proceedings of ICAPP, 2003, No. 3235.
  8. V.V. Bezlepkin, M.A. Zatevakhin, O.P. Krektunoc, "Computational and Experimental Validation of a Passive Heat Removal System for NPP Containment with VVER-1200", Atomic energy, 2014, Vol. 115, No. 4.
  9. N. Fil, "Status and Perspectives of VVER Nuclear Power Plants", Meeting of the TWG-LWR, 2011.
  10. M. Kawakubo, M. Aritomi, H. Kikura, "An Experimental Study on the Cooling Characteristics of Passive Containment Cooling Systems", Journal of Nuclear Science and Technology, 2009, Vol. 46, pp. 339-345. https://doi.org/10.1080/18811248.2007.9711539
  11. J.W. Kim, Y. G. LEE, H. K. Ahn, "Condensation Heat Transfer Characteristic in the Presence of Noncondensable Gas on Natural Convection at High Pressure", Nuclear Engineering and Design, 2009, Vol. 239, pp. 339-345.
  12. H. Liu, N.E. Todreas, M.J. Driscoll, "An experimental investigation of a passive cooling unit for nuclear plant Containment", Nuclear Engineering and Design, 2000, Vol. 199, pp. 243-255. https://doi.org/10.1016/S0029-5493(00)00229-6
  13. Y.J. Cho, D.J. Euh, T.S. Kwon, "Preliminary Study on Design of Passive Containment Cooling System (PCCS)", Transactions of Korean Nuclear Society Spring Meeting, 2013.
  14. G.H. Nam, J.S. Park, S.N. Kim, "Conceptual Design of a Thermosyphon with application to Passive Containment Cooling System for APR1400", The Korean Society of Mechanical Engineers, 2013, Vol. 12, pp. 3434-3439
  15. 하희운, VVER형 신개념 원전 PCCS 설계보고서, 한국수력원자력, 2012.
  16. ANS Standard, "Decay Energy Release Rates Following Shutdown of Uranium-Fueled Thermal Reactors", 1973.
  17. KHNP, APR1400 Standard Safety Analysis Report, 2005.
  18. Korea Atomic Energy Research Institute, "MARS Code Manual Volume II: Input Requirements", 2009.