• 제목/요약/키워드: 건물 생애주기

Search Result 44, Processing Time 0.031 seconds

Evaluation Method of Green Construction Technologies Using Integrated LCC and LCA Analysis (LCC-LCA 통합 분석에 의한 친환경 건설기술 평가방법)

  • Kim, Yoon-Duk;Cha, Hee-Sung;Kim, Kyung-Ra;Shin, Dong-Woo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.12 no.3
    • /
    • pp.91-100
    • /
    • 2011
  • Green technologies of buildings are spreading for saving resource and energy consumption during life cycle of buildings. However, selection of optimized the technologies for applying projects is needed a lot of time and costs. Therefore prioritization is necessary to apply the technologies for buildings. An evaluation of economic value for the technologies is significant for prioritization of the technologies, however, the current evaluation system of economic value for technologies is not reflected the accurate features of the technologies. Green technologies have the objectives for reducing the emission of CO2 and saving the cost during the whole lifecycle of buildings. Thus the evaluation of economic feasibility for green technologies is needed to include the economic value from improving the environment. This paper developed the economic evaluation method integrated with LCC and LCA to accurately analyze the economic value for green technologies. Moreover, this paper drew the priority of the technologies by conducting case studies with the integrated method and analyzing the results with AHP. The conclusion of case studies, Green technologies is worth more if to include the economic value from improving the environment. Then in analysis of priority, Green intelligent component technologies were rated the highest. The conclusion of the study is able to utilize the supporting tool for making decision to select the optimized technologies for the projects and precedence study for developing future research of prioritization for green technologies. The future study for improving the developed method will supplement the various evaluation factors and apply the detailed weight to analyze the priority of green technologies.

Problems and Solutions of LCC Analysis in BTL Project for Education Facilities (교육시설 BTL 사업에서 LCC 분석의 문제점도출 및 해결방안)

  • Kim, Chung-Yung;Hong, Tae-Hoon;Hyun, Chang-Taek;Lee, Hyun-Jong
    • Korean Journal of Construction Engineering and Management
    • /
    • v.9 no.4
    • /
    • pp.182-192
    • /
    • 2008
  • The purpose of this research is to identify problems and solutions of domestic Life Cycle Cost analysis in BTL(Build-Transfer-Lease), a PFI(Private Finance Initiatives) project. It is expected BTL would be quite effective delivery method for public construction introducing the private's major capital investments and technologies, and obviously LCC analysis is becoming more important factor for success of BTL projects. Nevertheless, there are still some complicated issues in LCC analysis, a technique for selecting the optimal VE(Value Engineering) proposals and estimating OM&R (Operation, Maintenance, & Repair) cost of the buildings, and has been applied limitedly. This research mainly focuses on educational facility, as most frequently delivered by BTL currently, especially with two levels (Alternative LCC and Building LCC) , which is occupied main potion in BTL project. In addition, it identifies four main problems and suggests their solutions through case studies focusing six major factors (WBS, Repair Information, Life Cycle, Time value of money, Repair Information Database, LCC Model) from three projects. Advanced development of this research requires closer partnership between the private / public sectors, and their long term strategies.

A Basic Study for Sustainable Analysis and Evaluation of Energy Environment in Buildings : Focusing on Energy Environment Historical Data of Residential Buildings (빌딩의 지속가능 에너지환경 분석 및 평가를 위한 기초 연구 : 주거용 건물의 에너지환경 실적정보를 중심으로)

  • Lee, Goon-Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.262-268
    • /
    • 2017
  • The energy consumption of buildings is approximately 20.5% of the total energy consumption, and the interest in energy efficiency and low consumption of the building is increasing. Several studies have performed energy analysis and evaluation. Energy analysis and evaluation are effective when applied in the initial design phase. In the initial design phase, however, the energy performance is evaluated using general level information, such as glazing area and surface area. Therefore, the evaluation results of the detailed design stage, which is based on the drawings, including detailed information of the materials and facilities, will be different. Thus far, most studies have reported the analysis and evaluation at the detailed design stage, where detailed information about the materials installed in the building becomes clear. Therefore, it is possible to improve the accuracy of the energy environment analysis if the energy environment information generated during the life cycle of the building can be established and accurate information can be provided in the analysis at the initial design stage using a probability / statistical method. On the other hand, historical data on energy use has not been established in Korea. Therefore, this study performed energy environment analysis to construct the energy environment historical data. As a result of the research, information classification system, information model, and service model for acquiring and providing energy environment information that can be used for building lifecycle information of buildings are presented and used as the basic data. The results can be utilized in the historical data management system so that the reliability of analysis can be improved by supplementing the input information at the initial design stage. If the historical data is stacked, it can be used as learning data in methods, such as probability / statistics or artificial intelligence for energy environment analysis in the initial design stage.

바닥 급기 공조의 전망

  • 김영일
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.30 no.8
    • /
    • pp.54-59
    • /
    • 2001
  • 바낙 공기 급기(UFAD, underfloor air distribution)는 사무실과 상업 건물의 공조를 위하여 바닥 하부 공간을 사용하는 혁신적인 기술이다. 북미에서는 UFAD가 기존 천장 공기 급기 방식에 비하여 많은 장점을 지니므로 그 수요가 날로 증가하고 있다. 잘 설계된 UFAD 시스템은 다음과 같은 장점을 지닌다. - 건물의 용도 변경에 따픈 유연성이 우수하므로 건물의 생애 주기 비용을 감소시킨다. - 개별 쾌적성 제어가 가능하므로 온열 쾌적성, 거주자의 만족도 그리고 생산성을 향상시킨다. - 거주자주변에 직접 선선한 공기를 공급하므로 환기 효율, 실내 공기질 그리고 건강 상태를 향상시킨다. - 이코노마이저 운전, 온도 성층화 그리고 낮은 정합 운전에 의하여 에너지 비용을 감소시킨다. - 설비 공간이 축소되고 표준 철골 구조에서는 콘크리트 구조체 변경이 가능하므로 새 건축 공법에서는 충고를 감소시킬 수 있다. 1995년까지만 해도 UFAD는 파격적인 설계 기법이라고 여겨졌지만, 이제 설계자와 건축업자들은 2004년까지 신축되는 사무용 건축품의 35%는 바닥을 높인 기법이 적용되며 이 중 반 정도가 UFAD를 채택할 것이라고 예측하고 있다. 2000년 2억불이라고 추정되던 바닥을 높이는 건축의 시장 규모가 2004년에는 최소 10억불이 되리라고 예측된다. UFAD는 기본 연구에 의한 정립된 표준화된 설계 기법과 지침이 아직 마련되지 않았음에도 불구하고 현재 설계, 시공되고 있다. 이라한 경향은 펄수적인 연구가 수행되어 관련 업계가 지식과 경험을 충분히 쌓기 전까지는 계속될 전망이다. 본고는 시스템 설계와 운영의 주요한 특징, 기존 방식과 비교하여 지니고 있는 잠재적인 장점, 한계와 기술 개발의 필요성, UFAD 기술 개발을 위하여 계속적으로 요구되는 연구 분야 등을 서술함으로써 현재 UFAD 기술에 대한 평가를 한다.

  • PDF

Energy and Economic Analysis of Heat Recovery Cogeneration Loop Integrated with Heat Pump System by Detailed Building Energy Simulation (건물 에너지 상세 해석을 통한 소형 열병합 발전 및 히트펌프 복합 시스템의 경제성 분석)

  • Seo, Dong-Hyun;Koh, Jae-Yoon;Park, Yool
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.2
    • /
    • pp.71-78
    • /
    • 2009
  • Up until recently, the energy and the economic analysis of a cogeneration system have been implemented by a manual calculation that is based on monthly thermal loads of buildings. In this study, a cogeneration system modeling validation with a detail building energy simulation, eQUEST, for a building energy and cost prediction has been implemented. By analyzing the hourly building electricity and thermal loads, it enables users to decide proper cogeneration system capacity and to estimate more accurate building energy consumption. eQUEST also verified the energy analysis when the heat pump system is integrated with the cogeneration system. The mechanical system configuration benefits from the high efficiency heat pump system while avoiding the building electricity demand increase. Economic analysis such as LCC (Life Cycle Cost) method is carried out to verify economical benefits of the system by applying actual utility rates of KEPCO(Korea Electricity Power COmpany) and KOGAS(KOrea GAS company).

A System Dynamics Model for Evaluation of Maintenance Cost Policy in Deteriorated School Building (노후 학교건물의 유지관리비용 정책 평가를 위한 시스템 다이내믹스 모델)

  • Kang, Suhyun;Kim, Sangyong
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.12
    • /
    • pp.181-188
    • /
    • 2019
  • The maintenance of school building is pivotal issue. However, it is difficult to obtain basic analysis data for LCC(Lifecycle Cost) analysis and maintenance planning of school building. Therefore, this study proposed System Dynamics(SD) techniques to make maintenance decisions for school building. The interaction between the major parameters related to the aging of a building, maintenance activities, and cost were expressed in Causal Loop Diagram. Based on this, the formula for the relationship between causal maps was defined and converted to Stock and Flow Diagram. Through the completed SD model the 50-year plan of 214 educational building were tested by considered in account budget, maintainability, and budget allocation opinions. As a result, the integrated SD model demonstrated that it can support strategic decision making by identifying the status class and LCC behavior of school buildings by scenario. According to the scenario analysis, the rehabilitation action of preventive maintenance that primarily repairs the buildings in condition grade C showed the best performance improvement effect relative to the cost. Therefore, if the proposed SD model is expanded to consider the effects of other educational policies, the crucial performance improvement budget can be estimated in the long-term perspective.

Development of Economic Analysis Model for Rebuilding Feasibility Evaluation of Old School Building (노후 학교건물의 개축 타당성 평가를 위한 경제성 분석 모델 개발)

  • Lee, Changsu;Ahn, Heejae;Kwon, Woobin;Kim, Minju;Kim, Harim;Cho, Hunhee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.273-274
    • /
    • 2023
  • Although there are many old school buildings that is more than 40 years in Korea, it is difficult to rebuild all of them due to limitations in budget management. Therefore, objective feasibility evaluation criteria are necessary to determine which school buildings should be rebuilt preferentially among the numerous old school buildings. One of the rebuilding feasibility evaluation items, economic evaluation generally requires documents such as construction statements and facility drawings. However, because most buildings older than 40 years do not have these documents, an economic analysis model that requires only basic building information should be developed. In this study, the economic analysis model that can be used for evaluating the rebuilding feasibility only with the number of years, total floor area, and structural information of school buildings was established. This model can contribute to the objective feasibility evaluation of old school buildings because it can evaluate numerous buildings on the same criteria based on basic building information.

  • PDF

Life Cycle Costing for HVAC Systems through Case Studies of Domestic Construction Projects (사례분석을 통한 공조설비 LCC분석 개선방안)

  • Yang Hee-Chan;Lee Seung-Hoon;Hyun Chang-Taek
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.279-282
    • /
    • 2002
  • 최근 건설사업시장의 개방과 건설사업관리제도(이하CM)의 도입으로 국내 건설업계 및 생산시스템에도 많은 변화가 일어나고 있다. 이에 따라, 건축물의 초기시설비는 물론 유지관리 및 최종 폐기단계까지의 비용을 종합적으로 고려한 건물생애주기비용(이하 LCC)에 대한 중요성이 증대되었으며 특히 기계장치의 유지관리비 중 많은 부분을 차지하는 공기조화시설 부문에서 LCC가 주로 검토되고 있다. 그러나 국내에서는 공기조화 설비의 LCC에 대한 절차 및 기준 등이 미비하여 효과적인 LCC분석이 이루어지지 않고 있다. 본 연구는 최근 수행된 국내 공기조화 설비분야의 LCC분석 사례를 조사하여, 국내 공조설비의 LCC분석의 문제점을 분석하였다. 또한 사례 분석을 중심으로 공조설비의 LCC분석 절차를 제시하고 이 절차에 따라 7개의 사례를 비교분석하였다. 그 결과, LCC측면에서 최적 대안을 선정하는 경우 각 대안 별로 뚜렷한 차이를 보이고 있는 에너지비용과 초기투자비를 주된 비용요소로 고려하는 것이 가장 효과적인 것으로 나타났다.

  • PDF

A Study on the Evaluation of the Efficiency in the Costs of the Remodeling (개보수 대상 건물의 비용 측면에서의 효율성 평가에 관한 연구 - 바닥 마감재를 중심으로 -)

  • Kim, Sang-Yong;Jung, Byung-Woo;Kang, Kyung-In
    • Journal of the Korea Institute of Building Construction
    • /
    • v.3 no.4
    • /
    • pp.129-134
    • /
    • 2003
  • The purpose of this study is to evaluate efficiency by the Life Cycle Cost(LCC) analysis of floor covering materials for remodeling. This study has been performed as a case study. The LCC analysis is a technique which takes account into both initial-future costs and benefits of an investment over some period of time. LCC is important in commercial decision making because it provides improved assessment of the living-term cost effectiveness of construction projects as well as alternative economic methods that focus on initial costs. For LCC analysis and comparison, the present value technique is used. The results of this study are summarized as follows; (1) A LCC analysis model of floor covering materials is suggested through a case study (2) As a result of LCC case study, the type of sheet is analysed more economical than that of tile in floor covering materials.

Development of Construction Material Naming Ontology for Automated Building Energy Analysis (건축물 에너지 분석 자동화를 위한 건축 자재명 온톨로지 구축)

  • Kim, Ka-Ram;Kim, Gun-Woo;Yoo, Dong-Hee;Yu, Jung-Ho
    • Korean Journal of Construction Engineering and Management
    • /
    • v.12 no.5
    • /
    • pp.137-145
    • /
    • 2011
  • BIM Data exchange using standard format can provide a user friendly and practical way of integrating the BIM tools in the life cycle of a building on the currently construction industry which is participated various stakeholder. It used IFC format to exchange the BIM data from Design software to energy analysis software. However, since we can not use the material name data in the library of an energy analysis directly, it is necessary to input the material property data for building energy analysis. In this paper, to matching the material named of name of DOE-2 default library, rhe extracted material names from BIM file are inferred by the ontology With this we can make the reliable input data of the engine by development a standard data and also increase the efficient of building energy analysis process. The methodology can enable to provide a direction of BIM-based information management system as a conceptual study of using ontology in the construction industry.